Лимфоциты не способны к фагоцитозу. Фагоцитоз - это основной механизм работы иммунной системы

Человека осуществляет важный процесс, который получил название фагоцитоз. Фагоцитоз - это процесс поглощения клетками чужеродных частиц. Ученые полагают, что фагоцитоз является наиболее древней формой защиты макроорганизма, поскольку фагоциты - это клетки, осуществляющие фагоцитоз, обнаруживаются и у позвоночных животных, и у беспозвоночных. Что же такое фагоцитоз и какова его функция в работе иммунной системы человека? Явление фагоцитоза открыл в 1883 г. И.И.Мечников. Он же доказал и роль фагоцитов, как защитных клеток иммунной системы. За это открытие И.И. Мечников был удостоен в 1908 году Нобелевской премии по физиологии. Фагоцитоз - это активный захват и поглощение живых клеток и неживых частиц одноклеточными организмами или особыми клетками многоклеточных организмов - фагоцитами, который состоит из последовательных молекулярных процессов и длится нескольких часов. Фагоцитоз является первой реакцией иммунной системы организма на внедрение чужеродных антигенов, которые могут проникнуть в организм в составе бактериальных клеток, вирусных частиц или в виде высокомолекулярного белка или полисахарида. Механизм фагоцитоза однотипен и включает восемь последовательных фаз:
1) хемотаксис (направленное движение фагоцита к объекту);
2) адгезия (прикрепление к объекту);
3) активация мембраны (актин—миозиновой системы фагоцита);
4) начало собственно фагоцитоза, связанное с образованием вокруг поглощаемой частицы псевдоподий;
5) образование фагосомы (поглощаемая частица оказывается заключенной в вакуоль благодаря надвиганию на нее плазматической мембраны фагоцита подобно застежке—молнии;
6) слияние фагосомы с лизосомами;
7) уничтожение и переваривание;
8) выброс продуктов деградации из клетки.

Клетки фагоциты

Фагоцитоз осуществляют клетки фагоциты - это важные клетки иммунной системы. Фагоциты циркулируют по организму, выискивая «чужих». Когда агрессор найден, происходит его связывание при помощи рецепторов. После фагоцит поглощает агрессора. Подобный процесс длится около 9 минут. Внутри фагоцита бактерия попадает в состав фагосомы, которая в течение минуты сливается с гранулой или лизосомой, содержащими ферменты. Микроорганизм погибает под воздействием агрессивных пищеварительных ферментов либо в результате дыхательного взрыва, при котором высвобождаются свободные радикалы. Все клетки фагоциты находятся в состоянии готовности и могут быть призваны в определённое место, где необходима их помощь, при помощи цитокинов. Цитокины - это сигнальные молекулы, играющие важную роль на всех этапах иммунного ответа. Молекулы трансфер факторы - это одни из наиболее важных цитокинов иммунной системы. С помощью цитокинов, фагоциты также обмениваются информацией, вызывают другие фагоцитарные клетки к источнику инфекции, активируют «спящие» лимфоциты.
Фагоциты человека и других позвоночных делят на «профессиональные» и «непрофессиональные» группы. Этот раздел основывается на эффективности, с которой клетки участвуют фагоцитозе. Профессиональные фагоциты - это моноциты, макрофаги, нейтрофилы, тканевые дендритические клетки и тучные клетки.

Моноциты - "дворники" организма

Моноциты - это клетки крови, которые относятся к группе лейкоцитов. Моноциты называют «дворниками организма» из-за их удивительных возможностей. Моноциты поглощают клетки болезнетворных агентов и их фрагменты. При этом количество и размер поглощаемых объектов могут быть в 3 - 5 раз больше, чем те, которые способны поглощать нейтрофилы. Моноциты могут поглощать и микроорганизмы, находясь в среде с повышенной кислотностью. Другие лейкоциты на такое не способны. Моноциты также поглощают все остатки «борьбы» с патогенными микробами и тем самым создают благоприятные условия для восстановления тканей в местах воспаления. Собственно за эти способности моноциты и получили название «дворники организма».

Макрофаги - "большие пожиратели"

Макрофаги , дословно «большие пожиратели» - это большие иммунные клетки, которые захватывают и затем по частям уничтожают чужеродные, мертвые или поврежденные клетки. В том случае, если «поглощенная» клетка является инфицированной или злокачественной, макрофаги оставляют нетронутыми ряд ее чужеродных компонентов, которые затем используются в качестве антигенов для стимуляции образования специфичных антител. Макрофаги путешествуют по организму в поисках проникших сквозь первичные барьеры чужеродных микроорганизмов. Макрофаги находятся по всему телу почти во всех тканях и органах. Расположение макрофага можно определить по его размеру и внешнему виду. Продолжительность жизни тканевых макрофагов от 4 до 5 дней. Макрофаги могут быть активированы для выполнения таких функций, которые моноцит выполнить не может. Активированные макрофаги играют важную роль в разрушении опухолей путём образования фактора некроза опухоли альфа, гамма-интерферона, оксида азота, реактивных форм кислорода, катионных белков и гидролитических ферментов. Макрофаги выполняют роль уборщиков, избавляя организм от изношенных клеток и другого мусора, а также роль антиген-презентующих клеток, активирующих звенья приобретённого иммунитета человека .

Нейтрофилы - "пионеры" иммунной системы

Нейтрофилы обитают в крови и представляют собой наиболее многочисленную группу фагоцитов, обычно представляющую около 50% -60% общего количества циркулирующих лейкоцитов. Диаметр этих клеток около 10 микрометров и живут только в течение 5 дней. Во время острой фазы воспаления нейтрофилы мигрируют к очагу воспаления. Нейтрофилы - это первые клетки, реагирующие на очаг инфекции. Как только поступает соответствующий сигнал, они, примерно, в течение 30 минут выходят из крови и достигают места инфекции. Нейтрофилы быстро поглощают чужеродный материал, но после этого не возвращаются в кровь. Гной, который образуется в очаге инфекции - это мертвые нейтрофилы.

Дендритные клетки

Дендритные клетки - это особые антиген-презентующие клетки, которые имеют длинные отростки (дендриты). С помощью дендритов осуществляется поглощение патогенов. Дендритные клетки располагаются в тканях, которые контактируют с окружающей средой. Это, в первую очередь, кожа , внутренняя оболочка носа, лёгких, желудка и кишечника. После активации, дендритные клетки созревают и мигрируют в лимфатические ткани и там взаимодействуют с Т- и B-лимфоцитами. В результате этого возникает и организовывается приобретённый иммунный ответ. Зрелые дендритные клетки активируют Т-хелперы и Т-киллеры. Активированные Т-хелперы взаимодействуют с макрофагами и B-лимфоцитами чтобы и их, в свою очередь, активировать. Дендритные клетки, помимо всего этого, могут воздействовать на возникновение того или иного типа иммунного ответа.

Тучные клетки

Тучные клетки поглощают, убивают грамотрицательные бактерии и обрабатывают их антигены. Они специализируются на обработке фимбриальных белков на поверхности бактерий, которые участвуют в прикреплении к тканям. Также тучные клетки образовывают цитокины, которые запускают реакцию воспаления. Это важная функция в деле уничтожения микробов, потому что цитокины привлекают больше фагоцитов к месту инфекции.

"Непрофессиональные" фагоциты

К «непрофессиональным» фагоцитам относятся фибропласты, паренхиматозные, эндотелиальные и эпителиальные клетки. Для таких клеток фагоцитоз является не главной функцией. Каждые из них выполняют какие-либо другие функции. Это связано с тем, что «непрофессиональные» фагоциты не имеют специальных рецепторов, таким образом, они являются более ограниченными, чем «профессиональные».

Коварные обманщики

Патоген приводит к развитию инфекции только случае, если ему удалось справиться с защитой макроорганизма. Поэтому многие бактерии формируют процессы, цель которых - создание устойчивости к воздействию фагоцитов. И действительно множество патогенов получило возможность размножаться и выживать внутри фагоцитов. Существует несколько способов, с помощью которых бактерии избегают контакта с клетками иммунной системы . Первый - это размножение и рост в тех зонах, куда фагоциты не способны проникнуть, например, в поврежденный покров. Второй способ - это способность некоторых бактерий подавлять воспалительные реакции, без которых клетки фагоциты не способны правильно реагировать. Также некоторые патогены могут «обманывать» иммунную систему, заставляя ее принимать бактерию за часть самого организма.

Трансфер Факторы - память иммунной системы

Помимо выработки специальных клеток в иммунной системе синтезируется целый ряд сигнальных молекул, которые называются цитокины. К числу наиболее важных цитокинов относятся трансфер факторы. Ученые обнаружили, что трансфер факторы обладают уникальной эффективностью независимо от биологического вида донора и риципиента. Это свойство трансфер факторов объясняется одним из ключевых научных принципов,- чем более важным для жизнеобеспечения является тот или иной материал или структура, тем более универсальны они для всех живых систем. Трансфер Факторы действительно являются важнейшими иммуноактивными соединениями и обнаруживаются даже в самых примитивных иммунных системах. Трансфер факторы являются уникальным средством передачи иммунной информации от клетки к клетке внутри организма человека, а также от одного человека к другому. Можно сказать, что трансфер факторы являются «языком общения» иммунных клеток, памятью иммунной системы. Уникальным действием трансфер факторов является ускорение ответа иммунной системы на угрозу. Они увеличивают иммунную память, сокращают время борьбы с инфекцией, повышают активность действия натуральных киллеров. Первоначально считалось, что трансфер факторы могут быть активными только при инъекционном введении. Сегодня считают, что коровье молозиво является самым лучшим источником трансфер факторов. Следовательно, собирая излишки молозива и выделяя из него трансфер факторы, можно обеспечить население дополнительной иммунной защитой. Американская компания 4 life стала первой компанией в мире, которая начала выделять трансфер факторы из коровьего молозива особым методом мембранной фильтрации, на который получила соответствующий патент. Сегодня компания поставляет на рынок линейку препаратов Трансфер Фактор, аналогов которым не существует. Эффективность препаратов Трансфер Фактор подтверждена клинически. На сегодняшний день написано более 3000 научных работ о применении трансфер факторов при самых различных заболеваниях. И

1. Нейтрофилы первыми проникают в очаг воспаления, фагоцитируют микробы. Кроме того, лизосомальные ферменты распадающихся нейтрофилов размягчают окружающие ткани и формируют гнойный очаг.

2. Моноциты, мигрируя в ткани, превращаются там, в макрофаги и фагоцитируют все, что есть в очаге воспаления: микробы, разрушенные лейкоциты, поврежденные клетки и ткани организма и т.д. Кроме того, они усиливают синтез ферментов, способствующих образованию фиброзной ткани в очаге воспаления, и тем самым способствуют заживлению раны.

Фагоцит улавливает отдельные сигналы (хемотаксис) и мигрирует в их направлении (хемокинезис). Подвижность лейкоцитов проявляется в присутствии особых веществ (хемоаттрактантов). Хемоаттрактанты взаимодействуют со специфическими рецепторами нейтрофилов. В результате взаимодействия актина миозина осуществляется выдвижение псевдоподий и перемещение фагоцита. Двигаясь таким образом, лейкоцит проникает через стенку капилляра, выходит в ткани и контактирует с фагоцитируемым объектом. Как только лиганд взаимодействует с рецептором, наступает конформация последнего (этого рецептора) и сигнал передается на фермент, связанный с рецептором в единый комплекс. Благодаря чему осуществляется поглощение фагоцитируемого объекта и слияние его с лизосомой. При этом фагоцитируемый объект либо погибает (завершенный фагоцитоз ), либо продолжает жить и развиваться в фагоците (незавершенный фагоцитоз ).

Последняя стадия фагоцитоза – уничтожение лиганда. В момент контакта с фагоцитируемым объектом наступает активация мембранных ферментов (оксидаз), резко усиливаются окислительные процессы внутри фаголизосом, в результате чего наступает гибель бактерий.

Функция нейтрофилов. В крови нейтрофилы находятся всего несколько часов (транзитом из костного мозга в ткани), а свойственные им функции выполняют за пределами сосудистого русла (выход из сосудистого русла происходит в результате хемотаксиса) и только после активации нейтрофилов. Главная функция - фагоцитоз тканевых обломков и уничтожение опсонизированных микроорганизмов (опсонизация – прикрепление к стенке бактериальной клетки антитела или белков комплемента, что позволяет распознавать эту бактерию и фагоцитировать). Фагоцитоз осуществляется в несколько этапов. После предварительного специфического распознавания подлежащего фагоцитозу материала происходит инвагинация мембраны нейтрофила вокруг частицы и образование фагосомы. Далее в результате слияния фагосомы с лизосомами образуется фаголизосома, после чего происходит уничтожение бактерии и разрушение захваченного материала. Для этого в фаголизосому поступают: лизоцим, катепсин, эластаза, лактоферрин, дефензины, катионные белки; миелопероксидаза; супероксид О 2 – и гидроксильный радикал ОН – , образующиеся (наряду с Н 2 О 2) при респираторном взрыве. Респираторный взрыв: нейтрофилы в течение первых секунд после стимуляции резко увеличивают поглощение кислорода и быстро расходуют значительное его количество. Это явление известно как респираторный (кислородный ) взрыв . При этом образуются токсичные для микроорганизмов H 2 O 2 , супероксид O 2 – и гидроксильный радикал ОH – .После единственной вспышки активности нейтрофил погибает. Такие нейтрофилы составляют основной компонент гноя («гнойные» клетки).



Функция базофилов . Активированные базофилы покидают кровоток и в тканях участвуют в аллергических реакциях. Базофилы имеют высокочувствительные поверхностные рецепторы к фрагментам IgE, которые синтезируют плазматические клетки при попадании в организм антигенов. После взаимодействия с иммуноглобулином происходит дегрануляция базофилов. Выделение гистамина и других вазоактивных факторов при дегрануляции и окисление арахидоновой кислоты вызывают развитие аллергической реакции немедленного типа (такие реакции характерны для аллергического ринита, некоторых форм бронхиальной астмы, анафилактического шока).

Макрофаг - дифференцированная форма моноцитов - крупная (около 20 мкм), подвижная клетка системы мононуклеарных фагоцитов. Макрофаги - профессиональные фагоциты , они найдены во всех тканях и органах, это мобильная популяция клеток. Продолжительность жизни макрофагов - месяцы. Макрофаги подразделяют на резидентные и подвижные. Резидентные макрофаги присутствуют в тканях в норме, в отсутствие воспаления. Макрофаги захватывают из крови денатурированные белки, состарившиеся эритроциты (фиксированные макрофаги печени, селезёнки, костного мозга). Макрофаги фагоцитируют обломки клеток и тканевого матрикса. Неспецифический фагоцитоз характерен для альвеолярных макрофагов, захватывающих пылевые частицы различной природы, сажу и т.п. Специфический фагоцитоз происходит при взаимодействии макрофагов с опсонизированной бактерией.

Макрофаг, кроме фагоцитоза, выполняет чрезвычайно важную функцию: это- антигенпредставляющая клетка . К антигенпредставляющим клеткам, кроме макрофагов, относятся отростчатые (дендритные) клетки лимфоузлов и селезёнки, клетки Лангерганса эпидермиса, М‑клетки в лимфатических фолликулах пищеварительного тракта, дендритные эпителиальные клетки вилочковой железы. Эти клетки захватывают, обрабатывают (процессируют) и представляют Аг на своей поверхности T–лимфоцитам–хелперам, что приводит к стимуляции лимфоцитов и запуску иммунных реакций. ИЛ1 из макрофагов активирует Т‑лимфоциты и в меньшей степени - В‑лимфоциты.

К клеткам, способным осуществлять фагоцитоз, относятся :

Полиморфно-ядерные лейкоциты(нейтрофилы, эозинофилы, базофилы)

Моноциты

Фиксированные макрофаги (альвеолярные, перитонеальные, купферовские, дендритные клетки, Лангерганса

2. Какой вид иммунитета обеспечивает защиту слизистых оболочек, сообщающихся с внешней средой. и кожи от проникновения в организм возбудителя: видовой местный иммунитет

3. К центральным органам иммунной системы относятся:

Костный мозг

Сумка Фабрициуса и её аналог у человека(пейровы бляшки)

4. Какие клетки продуцируют антитела :

А. Т-лимфоцит

Б. В-лимфоцит

В. Плазматические клетки

5. Гаптенами являются:

Простые органические соединения с малой молекулярной массой пептиды, дисахара, Нк, липиды и др)

Не способны индуцировать образование антител

Способны специфически взаимодействовать с теми антителами, в индукции которых они участвовали (после присоединения к белку и превращения в полноценные антигены)

6. Проникновению возбудителя через слизистую оболочку препятствуют иммуноглобулины класса:

А. IgA

Б. SIgA

7. Функцию адгезинов у бактерий выполняют: структуры клеточной стенки(фимбрии, белки наружной мембраны, ЛПС)

У Гр(-):связано с пили, капсула, капсулоподобная оболочка, белки наружной мембраны

У Гр(+):тейхоевые и липотейхоевые кислоты клеточной стенки

8. Гиперчувствительность замедленного типа обусловлена:

Сенсибилизированными клетками-Т-лимфоцитами(лимфоцитами, прошедшими иммунологическое »обучение»в тимусе)

9. К клеткам, осуществляющим специфический иммунный ответ относятся:

Т-лимфоциты

В-лимфоциты

Плазматические клетки

10. Компоненты, необходимые для реакции агглютинации:

микробные клетки, частицы латекса(агглютиногены)

физиологический раствор

антитела(агглютинины)

11.Компонентами для постановки реакции преципитации являются:

А. Взвесь клеток

Б. Раствор антигена(гаптен в физиологическом растворе)

В. Гретая культура микробных клеток

Г. Комплемент

Д. Иммунная сыворотка или испытуемая сыворотка больного

12. Какие компоненты необходимы для реакции связывания комплемента:

Физиологический раствор

комплемент

сыворотка крови больного

эритроциты барана

гемолитическая сыворотка

13 Компоненты, необходимые для реакции иммунного лизиса:

А .Живая культура клеток

Б .Убитые клетки

В .Комплемент

Г .Иммунная сыворотка

Д. Физиологический раствор

14. У здорового человека в периферической крови количество Т-лимфоцитов составляет:

Б.40-70%

15.Препараты, используемые для экстренной профилактики и лечения:

А. Вакцины

Б. Сыворотки

В. Иммуноглобулины

16. Методом количественной оценки Т-лимфоцитов периферической крови человека является реакция:

А. Фагоцитоза

Б. Связывания комплемента

В. Спонтанного розеткоообразования с эритроцитами барана(Е-РОС)

Г. Розеткоообразования с эритроцитами мыши

Д. Розеткообразования с эритроцитами, обработанными антителами и комплементом(ЕАС-РОК )

17. При смешивании эритроцитов мыши с лимфоцитами периферической крови человека образуются “Е-розетки” с теми клетками, которые являются:

А. В-лимфоцитами

Б. Недифференцированными лимфоцитами

В. Т-лимфоцитами

18. Для постановки реакции латекс - агглютинации необходимо использовать все ниже перечисленные ингредиенты, за исключением:

А. Сыворотка крови больного в разведении 1:25

Б. Спирт

31. Если инфекционное заболевание передаётся человеку от больного животного, оно называется:

А. антропонозным

Б. зооантропонозным

32. Основные свойства и признаки полноценного антигена:

А. является белком

Б. является низкомолекулярным полисахаридом

Г. является высокомолекулярным соединением

Д. вызывает образование антител в организме

Е. не вызывает образование антител в организме

З. нерастворим в жидкостях организма

И. способен вступать в реакцию со специфическим антителом

К. не способен вступать в реакцию со специфическим антителом

33. К неспецифической резистентности макроорганизма относятся все ниже перечисленные факторы, за исключением:

А. фагоциты

Б. желудочный сок

В. антитела

Г. лизоцим

Е. температурная реакция

Ж. слизистые оболочки

З. лимфатические узлы

И. интерферон

К. система комплемента
Л. пропердин

З, анатоксин

49. Какие бактериологические препараты готовят из токсинов бактерий:

Профилакт. анатоксины

Диагностич. токсин

50. Какие ингредиенты необходимы для приготовления убитой вакцины:

Высоко вирулентный и высокоимммуногенный штамм микроорганизма(целые убитые бактериал. клетки)

Нагревание при t=56-58C в течение 1ч

Добавление формалина

Добавление фенола

Добавление спирта

Облучение ультрафиолетовыми лучами

Обработка ультразвуком

! 51. Какие из перечисленных бактерийных препаратов применяются для лечения инфекционных болезней:

А. вакцина живая

Б. анатоксин

В. иммуноглобулин

Г. антитоксическая сыворотка

Д. диагностикум

Е. бактериофаг

Ж. аллерген

З. агглютинирующая сыворотка

И. вакцина убитая

К. преципитирующая сыворотка

52. Для каких иммунных реакций применяются диагностикумы:

Развёрнутая реакция агглютинции типа Видаля

Реакции пассивной, или непрямой гемагглютинации(РНГА)

53. Продолжительность защитного действия иммунных сывороток, введенных в организм человека: 2-4недели

54. Способы введения вакцины в организм:

внутрикожно

подкожно

внутримышечно

интраназально

перорально(энтерально)

через слизистые оболочки дыхательных путей с использованием искусственных аэрозолей живых или убитых вакцин

55. Основные свойства эндотоксинов бактерий:

А.являются белками (клеточной стенки Гр(-)бактерий)

Б. состоят из липополисахаридных комплексов

? В. прочно связаны с телом бактерии

Г. легко выделяются из бактерии в окружающую среду

Д. термостабильны

Е. термолабильны

Ж. высокотоксичны

З. умеренно токсичны

И. способны переходить в анатоксин под действием формалина и температуры

К. вызывает образование антитоксинов

56. Возникновение инфекционного заболевания зависит от:

А. формы бактерии

Б. реактивности микроорганизма

В. способности окрашиваться по Граму

Г. доза инфекции

Д. степени патогенности бактерии

Е. входных ворот инфекции

Ж. состояния сердечно-сосудистой системы микроорганизма

З. состояния окружающей среды (атмосферного давления, влажности , солнечной радиации, температуры и т. д.)

57. Антигены ГКГС (главного комплекса гистосовместимости) находятся на мембранах:

А. ядросодержащих клеток разных тканей микроорганизма (лейкоцитов, макрофагов, гистиоцитов и т. д.)

Б. эритроцитов

В. только лейкоцитов

58. Способность бактерий выделять экзотоксины обусловлена:

А. форма бактерии
Б. наличие tox -гена

В. способности к капсулообразованию

? 59. Основными свойствами патогенных бактерий являются:

А. способность вызвать инфекционный процесс

Б. способность образовывать споры

В. специфичность действия на макроорганизм

Г. термостабильность

Д. вирулентность

Е. способность образовывать токсины

Ж. инвазивность

З. способность образовывать сахара

И. способность к капсулообразованию

К. органотропность

60. Методами оценки иммунного статуса человека являются:

А. реакция агглютинации

Б. реакция фагоцитоза

В. реакция кольцепреципитации

Г. радиальная иммуннодиффузия по Манчини

Д. иммуннофлюоресцентный тест с моноклональными антителами для идентификации Т-хелперов и Т-супрессоров

Е. реакция связывания комплемента

Ж. метод спонтанного розеткообразования с эритроцитами барана (Е-РОК)

61. Иммунологическая толерантность это:

А. способность вырабатывать антитела

Б. способность вызывать пролиферацию определённого клона клеток

В. отсутствие иммунологического ответа на антиген

62. Инактивированная сыворотка крови:

Сыворотка,подвергшаяся термической обработке при 56С в течение 30мин, приведшая к разрушению комплемента

63. Клетками, подавляющими иммунный ответ, и участвующими в феномене иммунотолерантности, являются:

А. Т-хелперы

Б. эритроциты

В. лимфоциты Т-супрессоры

Г. лимфоциты Т-эффекторы

Д. лимфоциты Т-киллеры

64. Функциями клеток Т-хелперов являются:

Необходимы для превращения В-лимфоцитов в антителобразующие клетки и клетки-памяти

Распознают клетки, имеющие антигены МНС класса 2(макрофаги, В-лимфоциты)

Осуществляют регуляцию иммунного ответа

65. Механизм реакции преципитации:

А. образование иммунного комплекса на клетках

Б. инактивация токсина

В. образование видимого комплекса при добавлении к сыворотке раствора антигена

Г. Свечение комплекса антиген-антитело в ультрафиолетовых лучах

66. Деление лимфоцитов на Т - и В-популяции обусловлено:

А. наличием определённых рецепторов на поверхности клеток

Б. местом пролиферации и дифференцировки лимфоцитов (костный мозг, тимус)

В. способностью вырабатывать иммунноглобулины

Г. наличием НGA комплекса

Д. способностью фагоцитировать антиген

67. К ферментам агрессии относят:

Протеаза (разрушает антитела)

Коагулаза (свёртывает плазму крови)

Гемолизин (разрушает оболочки эритроцитов)

Фибринолизин (растворение сгустка фибрина)

Лецитиназа (действует на лецитин)

68. Через плаценту проходят иммуноглобулины класса:

А .Ig G

69.Защиту от дифтерии, ботулизма, столбняка определяет иммунитет:

А. местный

Б. антимикробный

В. антитоксический

Г. врождённый

70. В реакции непрямой гемагглютинации участвуют:

А. в реакции участвуют антигены эритроцитов

Б. в реакции участвуют антигены, сорбированные на эритроцитах

В. в реакции участвуют рецепторы к адгезинам возбудителя

71. При сепсисе:

А. кровь является механическим переносчиком возбудителя

Б. возбудитель размножается в крови

В. возбудитель поступает в кровь из гнойных очагов

72. Внутрикожная проба для выявления антитоксического иммунитета:

Проба Шика с дифтерийным токсином положительна в том случае, если в организме нет антител, способных нейтрализовать токсин

73. Реакция иммунодиффузии по Манчини относится к реакции типа:

А. реакция агглютинации

Б. реакция лизиса

В. реакция преципитации

Д. ИФА (иммунноферментативный анализ)

Е. реакция фагоцитоза

Ж. РИФ (реакция иммуннофлюоресценции)

74. Реинфекция это:

А. заболевание, развившееся после выздоровления при повторным заражении тем же возбудителем

Б. заболевание, развившееся при заражении тем же возбудителем до выздоровления

В. возврат клинических проявлений

75. Видимым результатом положительной реакции по Манчини является:

А. образование агглютининов

Б. помутнение среды

В. растворение клеток

Г. образование колец преципитации в геле

76. Резистентность человека к возбудителю холеры кур определяет иммунитет:

А. приобретённый

Б. активный

В. пассивный

Г. постинфекционный

Д. видовой

77. Только в присутствии возбудителя сохраняется иммунитет:

А. активный

Б. пассивный

В. врождённый

Г. стерильный

Д. инфекционный

78. Реакция латекс-агглютинации не может быть использована с целью:

А. идентификация возбудителя болезни

Б. определение классов иммунноглобулинов

В. обнаружение антител

79. Реакция розеткообразования с эритроцитами барана (Е-РОК) считается

положительной, если на одном лимфоците адсорбируется:

А. один эритроцит барана

Б. фракция комплемента

В. более2-х эритроцитов барана(больше 10)

Г. антиген бактерии

? 80. Незавершенный фагоцитоз наблюдается при заболеваниях:

А. сифилис

Б. бруцеллёз

В. туберкулёз

Г. дизентерия

Д. менингит

Е. лепра

Ж. гонорея

З. брюшной тиф

И. холера

К. сибирская язва

? 81. Специфическими и неспецифическими факторами гуморального иммунитета являются:

А. эритроциты

Б. лейкоциты

В. лимфоциты

Г. тромбоциты

Д. иммуноглобулины

Е. система комплемента

Ж. пропердин

З. альбумин

И. лейкины

К. лизины

Л. эритрин

лизоцим

82. При смешивании эритроцитов барана с лимфоцитами периферической крови человека образуются Е-розетки только с теми клетками, которые являются:

А. В-лимфоцитами

Б. недифферецированными

В. Т-лимфоцитами

83. Учет результатов реакции латекс-агглютинации производят в:

А. в миллилитрах

Б. в миллиметрах

В. в грамах

Г. в плюсах

84. К реакциям преципитации относятся:

Б. реакция флокуляции(по Коротяеву)

В. феномен Исаева Пфейфера

Г. реакция преципитации в геле

Д. реакция агглютинации

Е. реакция бактериолиза

Ж. реакция гемолиза

З. реакция кольцепрецепитации Асколи

И. реакция Манту

К. реакция радиальной иммунодиффузии по Манчини

? 85. Основные признаки и свойства гаптена:

А. является белком

Б. является полисахаридом

В. является липидом

Г. имеет коллоидную структуру

Д. является высокомолекулярным соединением

Е. при введение в организм вызывает образование антител

Ж. при введение в организм не вызывает образование антител

З. растворим в жидкостях организма

И. способен реагировать со специфическими антителами

К. не способен реагировать со специфическими антителами

86.Основные признаки и свойства антител:

А. являются полисахаридами

Б. являются альбуминами

В. являются иммуноглобулинами

Г. образуются в ответ на введение в организм полноценногоантигена

Д. образуются в организме в ответ на введение гаптена

Е. способны вступать в реакции взаимодействия с полноценным антигеном

Ж. способны вступать в реакции взаимодействия с гаптеном

87. Необходимые компоненты для постановки развернутой реакции агглютинации типа Грубера:

А. сыворотка крови больного

Б. физиологический раствор

В. чистая культура бактерий

Г. известная иммунная сыворотка, неадсорбированная

Д. взвесь эритроцитов

Е. диагностикум

Ж. комплемент

З. известная иммунная сыворотка, адсорбированная

И. монорецепторная сыворотка

88. Признаки положительной реакции Грубера:

Г.20-24ч

89. Необходимые ингредиенты для постановки развернутой реакции агглютинации Видаля:

Диагностикум (взвесь убитых бактерий)

Сыворотка крови больного

Физиологический раствор

90. Антитела,_способствующие усилению фагоцитоза:

А. агглютинины

Б. процитинины

В. опсонины

Г. комплементсвязывающие антитела

Д. гомолизины

Е. оптитоксины

Ж. бактериотропины

З. лизины

91. Компоненты реакции кольцепреципитации:

А. физиологический раствор

Б. преципитирующая сыворотка

В. взвесь эритроцитов

Г. чистая культура бактерий

Д. диагностикум

Е. комплемент

Ж. преципитиноген

З. токсины бактерий

? 92. Для обнаружения агглютининов в сыворотке_крови больного применяются:

А. развёрнутая реакция агглютинации Грубера

Б. реакция бактериолиза

В. развёрнутая реакция агглютинация Видаля

Г. реакция преципитации

Д. реакция пассивной гемагглютинации с эритроцитарным диагоностикумом

Е. ориентировачная реакция агглютинации на стекло

93. Реакциями лизиса являются:

А. реакция преципитации

Б. феномен Исаева-Пфейфера

В. реакция Манту

Г. реакция агглютинации Грубера

Д. реакция гемолиза

Е. реакция агглютинации Видаля

Ж. реакция бактериолиза

З. реакция РСК

94. Признаки положительной реакции кольцепреципитации:

А. помутнение жидкости в пробирке

Б. потеря подвижности бактерий

В. появление осадка на дне пробирки

Г. появление кольца помутнения

Д. образование лаковой крови

Е. появление в агаре белых линий помутнения(«усон»)

95. Время окончательного учёта реакции агглютинации Груббера:

Г.20-24ч

96. Для постановки реакции бактериолиза необходимы:

Б. дистилированная вода

В. иммунная сыворотка(антитела )

Г. физиологический раствор

Д. взвесь эритроцитов

Е. чистая культура бактерий

Ж. взвесь фагоцитов

З. комплемент

И. токсины бактерий

К. монорецепторная агглютинирующая сыворотка

97. Для профилактики инфекционных заболеваний применяются:

А. вакцина живая

Б. иммуноглобулин

В. диагностикум

Г. вакцина убитая

Д. аллерген

Е. антитоксическая сыворотка

Ж. бактериофаг

З. анатоксин

И. вакцина химическая

К. агглютинирующая сыворотка

98. После перенесенного заболевания вырабатывается следующий вид иммунитета:

А. видовой

Б. приобретённый естественный активный

В. приобретённый искусственный активный

Г. приобретённый естественный пассивный

Д. приобретённый искусственный пассивный

99. После введения иммунной сыворотки формируется следующий вид иммунитета:

А. видовой

Б. приобретённый естественный активный

В. приобретённый естественный пассивный

Г. приобретённый искусственный активный

Д. приобретённый искусственный пассивный

100. Время окончательного учета результатов реакции лизиса, поставленной в пробирке:

Б.15-20мин

101.Количество фаз реакции связывания комплемента (РСК) :

Б. две

Г. четыре

Д. больше десяти

102. Признаки положительной реакции гемолиза:

А. выпадение эритроцитов в осадок

Б. образование лаковой крови

В. агглютинация эритроцитов

Г. появление кольца помутнения

Д. помутнение жидкости в пробирке

103. Для пассивной иммунизации применяются:

А. вакцина

Б. антитоксическая сыворотка

В. диагностикум

Д. иммуноглобулин

Е. токсин

Ж. аллерген

104. Ингредиентами, необходимыми для постановки РСК являются:

А. дистиллированная вода

Б. физиологический раствор

В. комплемент

Г. сыворотка крови больного

Д. антиген

Е. токсины бактерий

Ж. эритроциты барана

З. анатоксин

И. гемолитическая сыворотка

105. Для диагностики инфекционных заболеваний применяются:

А. вакцина

Б. аллерген

В. антитоксическая сыворотка

Г. анатоксин

Д. бактериофаг

Е. диагностикум

Ж. агглютинирующая сыворотка

З. иммуноглобулин

И. преципитирующая сыворотка

К. токсин

106. Из микробных клеток и их токсинов готовят бактериологические препараты:

А. анатоксин

Б. антитоксическая иммунная сыворотка

В. антимикробная иммунная сыворотка

Г. вакцины

Д. иммуноглобулин

Е. аллерген

Ж. диагностикум

З. бактериофаг

107. Антитоксическими сыворотками являются сыворотки:

А. противохолерная

Б. противоботулиническая

Г. противокоревая

Д. против газовой гангрены

Е. противостолбнячная

Ж. противодифтерийная

К. против клещевого энцефалита

108. Выберите правильную последовательность перечисленных стадий фагоцитоза бактерий:

1А. приближение фагоцита к бактерии

2Б. адсорбция бактерии на фагоците

3В. поглощение бактерии фагоцитом

4Г. образование фагосомы

5Д. слияние фагосомы с мезосомой и образование фаголизосомы

6Е. внутриклеточная инактивация микроба

7Ж. ферментативное переваривание бактерий и удаление оставшихся элементов

109. Выберите правильную последовательность этапов взаимодействия (межклеточной кооперации) в гуморальном иммунном ответе в случае внедрения тимус-независимого антигена:

4А. Формирование клонов плазматических клеток, продуцирующих антитела

3В. Распознавание антигена В-лимфоцитом

2Г. Представление дезинтегрированного антигена на поверхности макрофага

110. Антиген-это вещество, обладающее следующими свойствами:

Иммуногенностью (толерогенности),определяется чужеродностью

Специфичностью

111. Количество классов иммуноглобулинов у человека: пять

112. IgG в сыворотке крови здорового взрослого человека составляет от общего содержания иммуноглобулинов: 75-80%

113. При электрофорезе сыворотки крови человека Ig мигрируют в зону: γ-глобулинов

Выработка антител разных классов

115. Рецептор к эритроцитам барана присутствует на мембране: Т-лимфоцита

116. В-лимфоциты образуют розетки с:

эритроцитами мыши, обработанные антителами и комплементом

117. Какие факторы следует учитывать при оценке иммунного статуса:

Частоту инфекционных заболеваний и характер их течения

Выраженность температурной реакции

Наличие очагов хронической инфекции

Признаки аллергизации

118. «Нулевые» лимфоциты и их количество в организме человека это:

лимфоциты, не прошедшие дифференцировку, являющиеся клетками-предшественниками, их число составляет 10-20%

119. Иммунитет - это:

Система биологической защиты внутренней среды многоклеточного организма (поддержания гомеостаза)от генетически чужеродных веществ экзогенной и эндогенной природы

120. Антигенами являются:

Любые вещества, содержащиеся в микроорганизмах и других клетках или выделяемые ими, которые несут признаки чужеродной информации и при введении в организм вызывают развитие специфических иммунных реакции (все известные антигены - коллоидной природы) + белки. полисахариды, фосфолипиды. нуклеиновые кислоты

121. Иммуногенность - это:

Способность индуцировать иммунный ответ

122. Гаптенами являются:

Простые химические соединения малой молекулярной массы (дисахара, липиды, пептиды, нуклеиновые кислоты)

Неполные антигены

Не обладают иммуногенностью

Имеют высокий уровень специфичности к продуктам иммунного ответа

123. Основным классом иммуноглобулинов человека, обладающих цитофильностью и обеспечивающих реакцию гиперчувствительности немедленного типа является: IgE

124. При первичном иммунном ответе синтез антител начинается с класса иммуноглобулинов:

125. При вторичном иммунном ответе синтез антител начинается с класса иммуноглобулинов:

126.Основными клетками организма человека, обеспечивающими патохимическую фазу реакции гиперчувствительности немедленного типа, выделяя гистамин и др. медиаторы, являются:

Базофилы и тучные клетки

127. В реакциях гиперчувствительности замедленного типа участвуют:

Т-хелперы, Т-супрессоры, макрофаги и клетки-памяти

128. Созревание и накопление каких клеток периферической крови млекопитающих никогда не происходит в костном мозге:

Т-лимфоцитов

129. Найти соответствия между типом гиперчувствительности и механизмом реализации:

1.Анафилактическая реакция – выработка антител IgE при первичном контакте с аллергеном,антитела фиксируются на поверхности базофилов и тучных клеток, при повторном попадании аллргена выделяют медиаторы-гистамин, сератонин и т. д.

2.Цитотоксические реакции – участвуют антитела IgG, IgM, IgA, фиксированные на различных клетках, комплекс АГ-АТ активирует систему комплемента по классическому пути, след. цитолиз клеток.

3.Иммунокомплексные реакции – образование ИК(растворимый антиген, связанный с антителом + комплемент),комплексы фиксируются на иммунокомпетентных клетках, откладываются в тканях.

4.Клеточно-опосредованные реакции – антиген взаимодействует с предварительно сенсабилизированными иммунокомпетентными клетками, эти клетки начинают вырабатывать медиаторы, вызывая воспаление (ГЗТ)

130. Найти соответствия между путем активации комплемента и механизмом реализации:

1. Альтернативный путь за счёт полисахаридов, липополисахаридов бактерий, вирусов (АГ без участия антитела),связывается компонент C3b, с помощью белка пропердина этот комплекс активирует компонент С5, затем образование МАК=>лизис микробных клеток

2. Классический путь – за счёт комплекса Аг-Ат (комплексы IgM, IgG с антигенами, связывание компонента С1 , расщепление компонентов С2 и С4, образование С3 конвертазы, образование компонента С5

3 .Лектиновый путь – за счёт маннансвязывающего лектина(МСЛ), активация протеазы, расщепление компонентов С2-С4,вариант классич. Пути

131. Процессинг антигена - это:

Явление распознавания чужеродного антигена путём захвата, расщепления и связывания пептидов антигена с молекулами главного комплекса гистосовместимости 2 класса и представление их на поверхности клеток

? 132. Найти соответствия между свойствами антигена и развитием иммунного ответа:

Специфичность -

Иммуногенность -

133. Найти соответствия между типом лимфоцитов, их количеством, свойствами и путем их дифференцировки:

1. Т-хелперы, С D 4-лимфоциты – активируется АПК, вместе с молекулой МНС 2 класса, разделение популяции на Тх1 и Тх2(различаются интерлейкинами), образуют клетки - памяти, а Тх1 могут превращаться в цтотоксические клетки, дифференцировка в тимусе,45-55%

2.С D 8 - лимфоциты - цитотоксическое действие, активируется молекулой МНС 1 класса , могут играть роль супрессорных клеток, образуют клетки - памяти, разрушают клетки- мишени(«летальный удар»),22-24%

3.В-лимфоцит - дифференцировка в костном мозге, рецептор поучают лишь один рецептор, может после взаимодействия с антигеном идти в Т-зависимый путь(за счёт ИЛ-2 Т-хелпера, образование клеток памяти и прочих классов иммуноглобулинов) или Т-независимый (образуются лишь IgM),10-15%

134.Основная роль цитокинов:

Регулятор межклеточных взаимодействий(медиатор)

135.Клетками, участвующими в представлении антигена Т-лимфоцитам, являются:

Дендритные клетки

Макрофаги

Клетки Лангерганса

В-лимфоциты

136. Для выработки антител В-лимфоциты получают помощь от:

Т-хелперов

137. Т-лимфоциты распознают антигены, которые представляются в ассоциации с молекулами:

Главного комплекса гистосовместимости на поверхности антигенпредставляющих клеток)

138. Антитела класса IgE вырабатываются : при аллергических реакциях, плазматическим клетками в бронхиальных и перитонеальных лимфатических узлах, в слизистой оболочке жКт

139. Фагоцитарную реакцию выполняют:

нейтрофилы

эозинофилы

базофилы

макрофаги

моноциты

140. Нейтрофильные лейкоциты обладают функциями:

Способны к фагоцитозу

Секретируюь широкий набор биологически активных веществ(ИЛ-8 вызывает дегрануляцию)

Связан с регуляция тканевого метаболизма и каскадом воспалительных реакций

141. В тимусе происходят: созревание и дифференцировка Т-лимфоцитов

142. Главный комплекс гистосовместимости (ГКГС) ответственен за:

А. являются маркерами индивидуальности своего организма

Б. образуются при поражении клеток организма какими-либо агентами (инфекционными) и метят клетки, которые должны быть уничтожены Т-киллерами

В. участвуют в иммунорегуляции, представляют антигенные детерминанты на мембране макрофагов и взаимодействуют с Т-хелперами

143. Образование антител происходит в: плазматических клетках

144. Антитела класса IgG могут:

Проходить через плаценту

Опсонизация корпускулярных антигенов

Связывание и активация комплемента по классическому пути

Бактериолиз и нейтрализация токсигенов

Агглютинация и преципитация антигенов

145. Первичные иммунодефициты развиваются_в результате:

Дефектов в генах(например, мутаций) , которые контролируют работу иммунной системы

146. К цитокинам относятся:

интерлейкины(1,2,3,4 и т. д.)

колониестимулирующие факторы

интерфероны

факторы некроза опухоли

макрофагингибирующий фактор

147. Найти соответствия между различными цитокинами и их основными свойствами:

1.Гемопоэтины - факторы роста клеток(ИД обеспечивает стимуляцию роста, дифференцировку и активацию Т-.В-лимффоцитов, NK -клетоки т. д.)и колониестимулирующих факторов

2.Интерфероны – противовирусная активность

3.Факторы некроза опухоли – лизирует некоторые опухоли, стимулируют антителообразованиеи активность мононуклеарных клеток

4.Хемокины -привлекают в очаг воспаления лейкоциты, моноциты, лимфоциты

148. Клетками, синтезирующими цитокины, являются:

активированные Т-лимфоциты

макрофаги

клетки стромы тимуса

моноциты

тучные клетки

149. Аллегенами являются:

1.полные антигены белковой природы:

пищевые продукты(яйца, молоко, орехи, моллюски); яды пчёл, ос; гормоны; сыворотки животных; ферментные препараты (стрептокиназа и др.) ; латекс; компоненты домашней пыли (клещи, грибы и др.); пыльца трав и деревьев; компоненты вакцин

150. Найти соответствия между уровнем тестов, характеризующих иммунный статус человека, и основными показателями системы иммунитета:

1-ый уровень - скрининговые (лейкоцитарная формула, определение активности фагоцитоза по интенсивности хемотаксиса, определение классов иммуноглобулинов, подсчётом числа В-лимфоцитов в крови, определение общего кол-ва лимфоцитов и процентного содержания зрелых Т-лимфоцитов)

2- ой уровень – количеств. определение Т-хелперов/ индукторови Т-киллеров\супрессоров, определение экспрессии молекул адгезии на поверхностной мембране нейтрофилов, оценку пролиферативной активности лимфоцитов на основные митогены, определение белков системы комплемента, определение белков острой фазы, субклассов иммуноглобулинов, определение присутствия аутоантител, постанвка кожных тестов

151.Найдите соответствия между формой инфекционного процесса и его характеристикой:

По происхождению : экзогенный – патогенный агент поступает извне

эндогенный – причиной развития инфекции является представитель условно-патогенной микрофлоры самого макроорганизма

аутоинфекция – при заносе возбудителей из одного биотопа макроорганизма в другой

По длительности течения : острые, подострые и хронические(возбудитель длительно сохраняется и персистирует)

По распространению : очаговые(локализованные) и генерализованные(распространение по лимфотическим путям или гематогенно):бактериемия, сепсис и септикопиемия

По месту инфецирования : внебольничные, внутрибольничные, природно-очаговые

152. Выберите правильную последовательность периодов в развитии инфекционной болезни:

1.инкубационный период

2.продормальный период

3.период выраженных клинических симптомов (острый период)

4. период реконвалесценции (выздоровления)-возможно бактерионосительство

153. Найдите соответствия между типом токсина бактерий и их свойствами:

1.цитотоксины – блокируют синтез белка на субклеточном уровне

2. мембранотоксины – повышают проницаемость поверхност. мембран эритроцитов и лейкоцитов

3.функциональные блокаторы - извращение передачи нервного импульса, повышение проницаемости сосудов

4.эксфолиатины и эритрогенины

154. Аллергены содержат:

155. Инкубационный период это: время от момента проникновения микроба в организм до появления первых признаков заболевания, что связано с размножением, накоплением микробов и токсином

Иммунология

Занятие № 1

Тема: « Учение об иммунитете. Неспецифические факторы защиты».

Иммунитет – это способ защиты организма от генетически чужеродных веществ – антигенов экзогенного и эндогенного происхождения, направленный на поддержание и сохранение гомеостаза, структурной и функциональной целостности организма, биологической (антигенной) индивидуальности каждого организма и вида в целом.

Такое определение подчеркивает:

    что иммунология изучает способы и механизмы защиты от любых генетически чужеродных для данного организма антигенов, будут они микробного, животного или другого происхождения;

    что механизмы иммунитета направлены против антигенов, которые могут проникать в организм, как из вне, так и формироваться в самом организме;

    что система иммунитета направлена на сохранение и поддержание генетически детерменированной антигенной индивидуальности каждой особи, каждого вида в целом

Иммунная защита о биологической агрессии достигается триадой реакций , включающей:

    распознавание чужеродных и измененных собственных макромолекул (АГ)

    удаление из организма АГ и несущих их клеток.

    запоминание контакта с конкретными АГ, определяющее их ускоренное удаление при повторном поступлении в организм.

Основоположники иммунологии:

    Луи Пастер – принцип вакцинации.

    И. И. Мечников – учение о фагоцитозе.

    Пауль Эрлих – гипотеза об антителах.

О важности иммунологии как науки свидетельствует то, что авторы многих открытий отмечены Нобелевской премией.

Факторы неспецифической резистентности организма

В неспецифической защите от микробом и антигенов важную роль, как указывалось выше, играют три барьера : 1) механический, 2) физико-химический и 3) иммунобиологический. Основными защитными факторами этих барьеров являются кожа и слизистые оболочки, ферменты, фагоцитирующие клетки, комплемент, интерферон, ингибиторы сыворотки крови.

Кожа и слизистые оболочки

Многослойный эпителий здоровой кожи и слизистых оболочек обычно непроницаем для микробов и макромолекул. Однако при малозаметных микроповреждениях, воспалительных изменениях, укусах насекомых, ожогах и травмах через кожу и слизистые не могут проникать микробы и макромолекулы. Вирусы и некоторые бактерии могут проникать в макроорганизм межклеточно, через клеточно и с помощью фагоцитов, переносящих поглощенных микробов через эпителий и слизистых оболочек. Свидетельством этому является инфицирование в естественных условиях через слизистые верхних дыхательных путей, легких, желудочно-кишечного трактат урогенитального тракта, а также возможность пероральной и ингаляционной иммунизации живыми вакцинами, когда вакцинный штамм бактерий и вирусов проникает через слизис­тые оболочки желудочно-кишечного тракта и дыхательных путей.

Физико-химическая защита

На чистой и неповрежденной коже обычно держится мало микробов, так как потовые и сальные железы постоянно выделяют на ее поверхность вещества, обладающие бактерицидным действием (уксусная, муравьиная, молочная кислоты).

Желудок также является барьером для проникающих перорально бактерий, вирусов, антигенов, так как последние инактивируются и разрушаются под влиянием кислого содер­жимого желудка (рН 1,5-2,5) и ферментов. В кишечнике инактивирующими факторами служат ферменты и бактериоцины, образуемые нормальной микробной флорой кишечника, а также трипсин, панкреатин, липаза, амилазы и желчь.

Иммунобиологическая защита

Фагоцитоз

Фагоцитоз (от греч. phagos - пожираю, cytos - клетка), открытый и изученный И. И. Мечниковым, является одним из ос­новных мощных факторов, обеспечивающих резистентность организма, защиту от инородных веществ, в том числе микробов. Это наиболее древняя форма иммунной защиты, которая появилась уже у кишечнополостных.

Механизм фагоцитоза состоит в поглоще­нии, переваривании, инактивации инород­ных для организма вешеств специализиро­ванными клетками - фагоцитами.

И. И. Мечников к фагоцитирующим клет­ кам отнес макрофаги и микрофаги. Наиболее изучены и численно преобладающие это моноциты крови и образующиеся из них макрофаги тканей. Длительность пребывания моноцитов в кровотоке составляет 2-4 сут. После этого они мигрируют в ткани, превращаясь в макрофаги. Продолжительность жизни макрофагов – от 20 сут до 7 мес (речь идет о различных субпопуляциях тканевых макрофагов); в большинстве это – 20 -40 дней.

Макрофаги крупнее моноцитов из-за распластанной формы. Макрофаги подразделяются на резидентные (стабильно локализующиеся в определенных тканях) и подвижные (мобилизуемые в очаг воспаления) В на­стоящее время все фагоциты объединены в единую мононуклеарную фагоцитирующую систему :

В нее включены тканевые макрофаги (альвеолярные, перитонеальные и др.), клет­ ки Лангерганса и Гренстейна (эпидермоциты кожи), клетки Купфера (звездчатые ретикулоэндотелиоциты), эпителиоидные клетки, нейтрофилы и эозинофилы крови и некото­рые другие.

Основные функции фагоцитов .

    удаляют из ор­ганизма отмирающие клетки и их структуры (эритроциты, раковые клетки);

    удаляют неметабилизируемые неорганические вещества, попадающие во внутреннюю среду организма тем или иным путем (например, частички угля, минеральную и другую пыль, проника­ющую в дыхательные пути);

    поглощают и инактивируют микробы (бактерии, вирусы, грибы), их останки и продукты;

    синтези­руют разнообразные биологически активные вещества, необходимые для обеспечения резистентности организма (некоторые компо­ненты комплемента, лизоцим, интерферон, интерлейкины и др.);

    участвуют в регу­ляции иммунной системы;

    осуществляют «ознакомление» Т-хелперов с антигенами, т. е. участвуют в кооперации иммунокомпетентных клеток.

Следовательно, фагоциты являются, с од­ной стороны, своеобразными «мусорщика­ми», очищающими организм от всех ино­родных частиц независимо от их природы и происхождения (неспецифическая функ­ция), а с другой стороны, участвуют в про­цессе специфического иммунитета путем представления антигена иммунокомпетентным клеткам (Т~ лимфоцитам) и регуляции и к активности.

Стадии фагоцитоза . Процесс фагоцитоза, т. е. поглощения инородного вещества клетка­ми, имеет несколько стадий:

    приближение фагоцита к объекту поглощения (хемотаксис);

    адсорбция п оглощаемого вещества на по­верхности фагоцита;

    поглощение вещества путем инвагинации клеточной мембраны с об­разованием в протоплазме фагосомы (вакуоли, пузырьки), содержащей поглощенное вещест­во;

    слияние фагосомы с лизосомой клетки с образованием фаголизосомы;

    активация лизосомальных ферментов и переваривание вещества в фаголизосоме с их помощью.

Особенности физиологии фагоцита . Для осу­ществления своих функций фаго­циты располагают обширным набором литических ферментов, а также продуцируют перекисные и N0" ион-радикалы, которые могут поражать мембрану (или стенку) клетки на расстоянии или после фагоцитирования. На цитоплазматической мембране находятся рецепторы к компонентам комплемента, Fc-фрагментам иммуноглобулинов, гистамину, а также антигены гистосовместимости I и II класса. Внутриклеточные лизосомы содержат до 100 различных ферментов, способных «пе­реварить» практически любое органическое вещество.

Фагоциты имеют развитую поверхность и очень подвижны. Они способны активно пе­ремещаться к объекту фагоцитоза по гради­енту концентрации особых биологически ак­тивных веществ - хемоаттрактантов. Такое передвижение получило название хемотаксис (от греч. chymeia - искусство сплавления металлов и taxis - расположение, построе­ние). Это АТФ-зависимый процесс, в кото­ром участвуют сократительные белки актин и миозин. К числу хемоаттрактантов относятся, например, фрагменты компонентов компле­мента (СЗа и С5а), лимфокины ИЛ-8 и др., продукты распада клеток и бактерий, плюс измененный эпителий кровеносного сосуда в месте воспаления. Как известно, ранее других клеток в очаг воспаления мигрируют нейтрофилы, существенно позже туда поступают макрофаги. Однако скорость хемотаксического перемещения одинакова. Различия связаны с разным набором факторов, служащих для них хемоаттрактантами, с более быстрой начальной реакцией нейтрофилов (запуск хемотаксиса), а также присутствие нейтрофилов в пристеночном слое сосудов (т.е. их готовность к проникновению в ткани)

Адсорбция вещества на поверхности фа­гоцита осуществляется за счет слабых хи­мических взаимодействий и происходит ли­бо спонтанно, неспецифически, либо путем связывания со специфическими рецепторами (к иммуноглобулинам, компонентам компле­мента). Мембранные структуры, взаимодействующие при контакте фагоцитов с клетками мишенями (в частности, опсонины на поверхности микробной клетки и их рецепторы на поверхности фагоцита), расположены равномерно на взаимодействующих клетках. Это создает условия для последовательного обхвата частицы псевдоподиями, что тотально вовлекает в процесс всю поверхность фагоцита и приводит к поглощению частицы вследствие замыкания мембраны по принципу «застежки молнии». «Захват» фагоцитом вещества вызыва­ет выработку большого количества перекисных радикалов («кислородный взрыв») и N0", которые вызывают необратимые, летальные повреждения как цельных клеток, так и отде­льных молекул.

Поглощение адсорбированного на фаго­ците вещества происходит путем эндоцито за. Это энергозависимый процесс, связан­ный с преобразованием энергии химических связей молекулы АТФ в сократительную ак­тивность внутриклеточного актина и мио­зина. Окружение фагоцитируемого вещества бислойной цитоплазматической мембраной и образование изолированного внутриклеточ­ного пузырька - фагосомы напоминает «за­стегивание молнии». Внутри фагосомы про­должается атака поглощенного вещества активными радикалами. После слияния фа­госомы и лизосомы и образования в цитоп­лазме фаголизосомы происходит активация лизосомальных ферментов, которые разру­шают поглощенное вещество до элементар­ных составляющих, пригодных для дальней­шей утилизации для нужд самого фагоцита.

В фаголизосоме существует несколько систем факторов бактерицидности :

    факторы, требующие участия кислорода

    азотистые метаболиты

    активные субстанции, в том числе и ферменты

    локальное закисление.

    Одной из основных форм разрушения микроорганизма внутри макрофага – это кислородный взрыв . Кислородный, или дыхательный взрыв – это процесс образования продуктов частично восстановленного кислорода, свободных радикалов, перекисей и других продуктов, обладающих высокой антимикробной активностью. Эти процессы развиваются в течение секунд, что и определило их обозначение как «взрыв». Обнаружены различия между КВ нейтрофилов и макрофагов , в первом случаи реакция более кратковременная, но интенсивнее, она приводит к большому накоплению перекиси водорода и не зависит от синтеза белков, во втором случаи она более длительная, но подавляется ингибитором синтеза белка циклогексидином.

    Окись азота и радикал NO (особенно важно при разрушении микобактерий).

    Ферментативное расщепление вещества может также происходить внеклеточно при выходе ферментов за пределы фагоцита.

    Затрудняется поступление в микробную клетку питательных веществ в следствии снижения ее электронного потенциала. В кислой среде повышается активность ферментов.

Фагоциты, как правило, «переваривают» за­хваченные бактерии, грибы, вирусы, осущест­вляя таким образом завершенный фагоцитоз. Однако в ряде случаев фагоцитоз носит неза­вершенный характер : поглощенные бактерии (например, иерсинии) или вирусы (например, возбудитель ВИЧ-инфекции, натуральной оспы) блокируют ферментативную активность фагоцита, не погибают, не разрушаются и да­же размножаются в фагоцитах. Такой процесс получил название незавершенный фагоцитоз.

Небольшой олигопептид может быть эндоцитирован фагоцитом и после процессинга (т. е. ограниченного протеолиза) включен в состав молекулы антигена гистосовметимо ти II класса. В составе сложного макромолекулярного комплекса олигопептид выставля­ется (экспрессируется) на поверхности клетки для «ознакомления» с ним Т-хелперов.

Фагоцитоз активируется под влиянием антител-опсонинов, адъювантами, компле­ментом, иммуноцитокинами (ИЛ-2) и дру­гими факторами. Механизм активирующего действия опсонинов основан на связывании комплекса антиген-антитело с рецепторами к Fc-фрагментам иммуноглобулинов на по­верхности фагоцитов. Аналогичным образом действует комплемент, который способствует связыванию на специфических для него ре­цепторах фагоцита (С-рецепторах) комплекса антиген-антитело. Адъюванты укрупняют мо­лекулы антигена и таким образом облегчают процесс его поглощения, так как интенсив­ность фагоцитоза зависит от величины погло­щаемой частицы.

Активность фагоцитов характеризуется фа­ гоцитарными показателями и опсоно-фагоци тарным индексом.

Фагоцитарные показатели оцениваются числом бактерий, поглощенных или «переваренных» одним фагоцитом в еди­ницу времени, а опсонофагоцитарный индекс представляет отношение фагоцитарных пока­зателей, полученных с иммунной, т. е. содер­жащей опсонины, и неиммунной сывороткой. Эти показатели используются в клинической практике для определения иммунного статуса индивидуума.

Секреторная активность макрофагов. Т акая активность свойственна преимущественно активированным фагоцитирующим клеткам, но по крайней мере макрофаги выделяют субстанции (лизоцим, простагландин Е2) спонтанно. Активность выражается в двух формах :

1 . выброс содержимого гранул (для макрофагов лизосом), т.е. дегрануляция .

2 . секреция с участием ЭПР и аппарата Гольджи.

Дегрануляция свойственна всем основным фагоцитирующим клеткам, а второй тип исключительно макрофагам.

С остав гранул нейтрофилов разделен на две части, одни действуют при нейтральных или щелочных значения ph, другая кислые гидролазы.

Главная особенность макрофагов в сравнение с нейтрофилами, это значительно более выраженная секреция, не связанная с дегрануляцией.

Макрофаги спонтанно секретируют : лизоцим, компаненты комплимента, ряд ферментов (например, эластазу), фибронектин, апопротеин А и липопротеиновую липазу. При активизации значительно увеличивается секреция: С2, С4, фибронектина, активатора плазминогена, включается синтез цитокинов (ИЛ1, 6 и 8), ФНОα, интерферонов α, β, гормонов и др.

Активация макрофагов приводит к процессам дегрануляции фагосом и лизосом с выделение продуктов, аналогичных тем, которые выделяются при дегрануляции нейтрофилов. Комплекс этих продуктов обуславливает внеклеточный бактериолиз и цитолиз, а так же переваривание компонентов разрушенных клеток. Однако внеклеточная бактерицидная активность у макрофагов выражена слабее, чем у нейтрофилов . Макрофаги не вызывают массированного аутолиза, приводящего к формированию гноя.

Тромбоциты

Тромбоциты также играют важную роль в иммунитете. Они возникают из мегакариоцитов, пролиферацию которых усиливает ИЛ-11. Тромбоциты имеют на своей поверхности ре­цепторы к IgG и IgE, к компонентам компле­мента (С 1 и СЗ), а также антигены гистосовместимости I класса. На тромбоциты оказывают влияние образующиеся в организме иммунные комплексы антиген + антитело (АГ+АТ), акти­вированный комплемент. В результате такого воздействия тромбоциты выделяют биологи­чески активные вещества (гистамин, лизоцим, (3-лизины, лейкоплакины, простагландины и др.), которые принимают участие в процессах иммунитета и воспаления.

Комплемент

Природа и характеристика комплемента . Комплемент является одним из важных фак­торов гуморального иммунитета, играющим роль в защите организма от антигенов. Он был открыт в 1899 г. французским имму­нологом Ж. Борде, назвавшим его «алекси­ном». Современное название комплементу дал П. Эрлих. Комплемент представляет со­бой сложный комплекс белков сыворотки крови, находящийся обычно в неактивном состоянии и активирующийся при соедине­нии антигена с антителом или при агрега­ции антигена.

В состав комплемента входят:

    20 взаимодействующих между собой белков,

- девять из которых являются основными ком­ понентами комплемента ; их обозначают циф­рами: С1, С2, СЗ, С4... С9.

Важную роль играют также факторы В, D и Р (пропердин).

Белки комплемента относятся к глобулинам и отличаются между собой по ряду физико-химических свойств. В частности, они сущес­твенно различаются по молекулярной массе, а также имеют сложный субъединичный состав: Cl-Clq, Clr, Cls; СЗ-СЗа, СЗЬ; С5-С5а, С5Ь и т. д. Компоненты комплемента синтези­руются в большом количестве (составляют 5-10 % от всех белков крови), часть из них образуют фагоциты. После активации они распадаются на субъединицы: легкие (а), лишены ферментативной активности, но обладают собственной активностью (хемотакические факторы и анафилогены) и тяжелые (b), обладающие ферментативной активностью.

Функции комплемента многообразны:

    участвует в лизисе микробных и других клеток (цитотоксическое действие);

    обладает хемотаксической активностью;

    принимает учас­тие в анафилаксии;

    участвует в фагоцитозе.

Следовательно, комплемент является компонен­ том многих иммунолитических реакций, направ­ ленных на освобождение организма от микробов и других чужеродных клеток и антигенов (на­пример, опухолевых клеток, трансплантата).

Механизм активации комплемента очень сложен и представляет собой каскад фер­ментативных протеолитических реакций, в результате которого образуется активный цитолитический комплекс, разрушающий стен­ку бактерии и других клеток.

Известны три пути активации комплемента :

    классический,

    альтернативный

    лектиновый.

По классическому пути комплемент активирует­ ся комплексом антиген-антитело. Для этого достаточно участия в связывании антигена одной молекулы IgM или двух молекул IgG. Процесс начинается с присоединения к ком­плексу АГ+АТ компонента С1, который рас­падается на субъединицы Clq, Clr и Cls. Далее в реакции участвуют последовательно активированные «ранние» компоненты комплемента в такой последовательности: С4, С2, СЗ. Эта реакция имеет характер усиливающе­гося каскада, т. е. когда одна молекула пре­дыдущего компонента активирует несколько молекул последующего. «Ранний» компонент комплемента СЗ активирует компонент С5, который обладает свойством прикрепляться к мембране клетки. На компоненте С5 путем последовательного присоединения «поздних» компонентов С6, С7, С8, С9 образуется лити ческий или мембраноатакующий комплекс (цилиндрический комплекс), который нарушает целостность мембраны (образует в ней отверстие), и клетка погибает в результате осмотического лизиса.

Альтернативный путь активации комплемен­та проходит без участия антител. Этот путь характерен для защиты от грамотрицательных микробов. Каскадная цепная реакция при аль­тернативном пути начинается с взаимодействия антигена (например, полисахарида) с протеи­нами В, D и пропердином (Р) с последующей активацией компонента СЗ. Далее реакция идет так же, как и при классическом пути - образу­ется мембраноатакующий комплекс.

Лектиновый путь активации комплемента также происходит без участия антител. Он ини­циируется особым маннозосвязывающим белком сыворотки крови, который после взаимодейс­твия с остатками маннозы на поверхности мик­робных клеток (отсутствует в макрорганизме) катализирует С4 (подобно С1grs). Дальнейший каскад реакций сходен с классическим путем.

В процессе активации комплемента обра­зуются продукты протеолиза его компонен­тов - субъединицы СЗа и СЗЬ, С5а и С5Ь и дру­гие, которые обладают высокой биологической активностью. Например, СЗа и С5а принимают участие в анафилактических реакциях, являют­ся хемоаттрактантами, СЗЬ - играет роль в опсонизации объектов фагоцитоза, и т. д. Сложная каскадная реакция комплемента происходит с участием ионов Са 2+ и Mg 2+ .

Замедление выведения ИК приводит к их отложению на биомембранах макроорганизма, как следствие развитие иммунопатоогии, т. к. они привлекают в очаг отложения макрофаги и другие эффекторы иммунного воспаления.

Лизоцим.

Особая и немаловажная роль в естествен­ной резистентности принадлежит лизоциму, открытому в 1909 г. П. Л. Лащенко и выделен­ному и изученному в 1922 г. А. Флемингом.

Лизоцим - это протеолитический фермент мурамидаза (от лат. mums - стенка) с моле­кулярной массой 14-16 кДа, синтезируемый макрофагами, нейтрофилами и другими фаго­цитирующими клетками и постоянно поступа­ющий в жидкости и ткани организма. Фермент содержится в крови, лимфе, слезах, молоке, сперме, урогенитальном тракте, на слизистых оболочках дыхательных путей, ЖКТ, в мозге. Отсутствует лизоцим лишь только в спинно­мозговой жидкости и передней камере гла­за. В сутки синтезируется несколько десятков граммов фермента.

Механизм действия лизо цима сводится к разрушению гликопротеидов (мурамиддипептида) клеточной стенки бакте­рий, что ведет к их лизису и способствует фаго­цитозу поврежденных клеток. Следовательно, лизоцим обладает бактерицидным и бактериостатическим действием. Кроме того, он акти­вирует фагоцитоз и образование антител.

Нарушение синтеза лизоцима ведет к сни­жению резистентности организма, возник­новению воспалительных и инфекционных заболеваний; в таких случаях используют для лечения препарат лизоцима, получаемый из яичного белка или путем биосинтеза, так как он продуцируется некоторыми бактериями (например, Bacillus subtilis ), растениям семейс­тва крестоцветных (редис, репа, хрен, капуста и т. д.). Химическая структура лизоцима извес­тна, и он синтезирован химическим способом.

Интерферон

Интерферон относится к важным защитным белкам иммунной системы. Открыт в 1957 г. А. Айзексом и Ж. Линдеманом при изучении интерференции вирусов (лат. inter - меж­ду и ferens - несущий), т. е. явления, когда животные или культуры клеток, инфициро­ванные одним вирусом, становились нечувс­твительными к заражению другим вирусом. Оказалось, что интерференция обусловлена образующимся при этом белком, обладаю­щим защитным противовирусным свойством. Этот белок назвали интерфероном. В насто­ящее время интерферон достаточно хорошо изучен, известны его структура и свойства, и он широко используется в медицине как ле­чебное и профилактическое средство.

Интерферон представляет собой семейство белков-гликопротеидов с молекулярной мас­сой от 15 до 70 кДа, которые синтезируются клетками иммунной системы и соединитель­ной ткани. В зависимости от того, какими клетками синтезируется интерферон, выделя­ ют три типа : α, β и β-интерфероны.

Альфа-интерферон вырабатывается лейкоцитами и он получил название лейкоцитар­ного; бета- интерферон называют фибробластным, поскольку он синтезируется фибробластами - клетками соединительной ткани, а гамма-интерферон - иммунным, так как он вырабатывается активированными Т-лимфоцитами, макрофагами, естественными килле­рами, т е. иммунными клетками.

Интерферон синтезируется в организме постоянно, и его концентрация в крови де­ржится на уровне примерно 2 МЕ/мл (1 меж­дународная единица - ME - это количество интерферона, защищающее культуру клеток от 1 ЦПД 50 вируса). Выработка интерферона резко возрастает при инфицировании виру­сами, а также при воздействии индукторов интерферона, например РНК, ДНК, сложных полимеров. Такие индукторы интерферона получили название интерфероногенов.

Помимо противовирусного действия интер­ферон обладает противоопухолевой защитой , так как задерживает пролиферацию (размноже­ние) опухолевых клеток, а также иммуномоду лирующей активностью , стимулируя фагоцитоз, естественные киллеры, регулируя антителообразование В-клетками, активируя экспрессию главного комплекса гистосовместимости.

Механизм действия интерферона сложен. Интерферон непосредственно на вирус вне клетки не действует, а связывается со спе­циальными рецепторами клеток и оказыва­ет влияние на процесс репродукции вируса внутри клетки на стадии синтеза белков.

Действие интерферона тем эффективнее, чем раньше он начинает синтезироваться или пос­тупать в организм извне. Поэтому его использу­ют с профилактической целью при многих ви­русных инфекциях, например гриппе, а также с лечебной целью при хронических вирусных инфекциях, таких как парентеральные гепати­ты (В, С, D), герпес, рассеянный склероз и др. Интерферон дает положительные результаты при лечении злокачественных опухолей и забо­леваний, связанных с иммунодефицитами.

Интерфероны обладают видоспецифичностью, т. е. интерферон человека менее эффек­тивен для животных и наоборот. Однако эта видоспецифичность относительна. Получают интерферон двумя способами: а) путем инфи­цирования лейкоцитов или лимфоцитов кро­ви человека безопасным вирусом, в результате чего инфицированные клетки синтезируют интерферон, который затем выделяют и конс­труируют из него препараты интерферона; б) генно-инженерным способом - путем выра­щивания в производственных условиях рекомбинантных штаммов бактерий, способных продуцировать интерферон. Обычно используют рекомбинантные штаммы псевдомонад, кишечной палочки со встроенными в их ДНК генами интерферона. Интерферон, получен­ный генно-инженерным способом, носит на­звание рекомбинантного. В нашей стране рекомбинантный интерферон получил офици­альное название «Реаферон». Производство этого препарата во многом эффективнее и дешевле, чем лейкоцитарного.

Это явление захвата и переваривания чужеродных вредных частиц, попавших в организм, особыми клетками-защитниками. Притом к фагоцитозу способны не только «специально обученные» фагоциты, цель жизни которых заключается в защите здоровья человека, но и клетки, выполняющие в нашем теле совершенно иные задачи… Итак, какие же существуют клетки, способные к фагоцитозу?

Моноциты

При фагоцитозе моноцит справляется с вредными объектами всего за 9 минут. Иногда он поглощает и расщепляет клетки и субстраты, превышающие его по размерам в несколько раз.

Нейтрофилы

Фагоцитоз нейтрофилов осуществляется похожим образом, с той лишь разницей, что они работают по принципу «Светя другим, сгораю сам». Это значит, что, захватив патоген и уничтожив его, нейтрофил погибает.

Макрофаги

Макрофаги - это осуществляющие фагоцитоз лейкоциты, образовавшиеся из моноцитов крови. Они располагаются в тканях: как непосредственно под кожей и слизистыми, так и в глубине органов. Существуют особые разновидности макрофагов, которые находятся в конкретных органах.

Например, в печени «живут» клетки Купфера, задача которых состоит в разрушении старых компонентов крови. В легких располагаются альвеолярные макрофаги . Эти клетки, способные к фагоцитозу, захватывают вредные частицы, проникшие в легкие с вдыхаемым воздухом, и переваривают их, разрушая своими ферментами: протеазами, лизоцимом, гидролазами, нуклеазами и т.д.

Обычные тканевые макрофаги обычно погибают после встречи с патогенами, то есть в этом случае происходит то же, что и при фагоцитозе нейтрофилов.


Дендритные клетки

Эти клетки - угловатые, ветвистые - совершенно не похожи на макрофаги. Тем не менее, они являются их родственниками, так как тоже образуются из моноцитов крови. К фагоцитозу способны только молодые дендритные клетки , остальные в основном «работают» с лимфоидной тканью , обучая лимфоциты правильно реагировать на некоторые антигены.

Тучные клетки

Помимо того, что тучные клетки запускают реакцию воспаления, эти лейкоциты способны к фагоцитозу. Особенность их работы состоит в том, что они уничтожают только грамотрицательные бактерии. Причины такой «разборчивости» не совсем понятны, видимо, у тучных клеток есть к этим бактериям особое сродство.

Они могут уничтожить сальмонеллу, кишечную палочку, спирохету, многих возбудителей ЗППП, но совершенно равнодушно воспримут возбудителя сибирской язвы, стрептококка и стафилококка. Борьбой с ними займутся другие лейкоциты.

Перечисленные выше клетки - это профессиональные фагоциты , об «опасных» свойствах которых известно всем. А теперь несколько слов о тех клетках, для которых фагоцитоз - не самая типичная функция.

Тромбоциты

Тромбоциты, или кровяные пластинки, занимаются главным образом тем, что отвечают за свертываемость крови, прекращают кровотечения, формируют тромбы. Но, помимо этого, у них обнаружены и фагоцитарные свойства. Тромбоциты могут образовывать ложноножки и уничтожать некоторые вредные компоненты, попавшие в организм.

Клетки эндотелия

Оказывается, клеточная выстилка сосудов тоже представляет
опасность для бактерий и прочих «захватчиков», проникших в организм. В крови с чужеродными объектами борются моноциты и нейтрофилы, в тканях их поджидают макрофаги и другие фагоциты, и даже в стенках сосудов, находясь между кровью и тканями, «враги» не могут «чувствовать себя в безопасности». Воистину, возможности защиты организма чрезвычайно велики. При увеличении содержания в крови и тканях гистамина, что происходит при воспалении, фагоцитирующая способность клеток эндотелия, почти незаметная до этого, возрастает в несколько раз!

Гистиоциты

Под этим собирательным названием объединяют все клетки тканей: соединительной ткани, кожи, подкожной клетчатки, паренхимы органов и так далее. Раньше этого никто не мог предположить, но оказывается, при определенных условиях многие гистиоциты способны менять свои «жизненные приоритеты» и тоже приобретать способность к фагоцитозу! Повреждения, воспаление и другие патологические процессы пробуждают в них эту способность, которая в норме отсутствует.

Фагоцитоз и цитокины:

Итак, фагоцитоз - процесс всеобъемлющий. В обычных условиях его осуществляют специально предназначенные для этого фагоциты, но критические ситуации могут вынудить к нему даже те клетки, для которых такая функция не характера. Когда организму угрожает реальная опасность, другого выхода просто нет. Это как на войне, когда оружие в руки берут не только мужчины, но и вообще все, кто способны его удержать.

В процессе фагоцитоза клетки образуют цитокины. Это так называемые сигнальные молекулы, при помощи которых фагоциты передают информацию другим компонентам иммунной системы . Самыми важными из цитокинов являются трансфер факторы, или факторы передачи - белковые цепочки, которые можно назвать самым ценным источником иммунной информации в организме.

Чтобы фагоцитоз и другие процессы в иммунной системе проходили благополучно и полноценно, можно использовать препарат Трансфер Фактор , действующее вещество которого и представлено факторами передачи. С каждой таблеткой средства организм человека получает порцию бесценных сведений о правильной работе иммунитета, полученных и накопленных многими поколениями живых существ.

При приеме Трансфер Фактора нормализуются процессы фагоцитоза, ускоряется ответ иммунной системы на проникновение возбудителей, повышается активность клеток, защищающих нас от агрессоров. Кроме того, через нормализацию работы иммунитета улучшаются функции всех органов. Это позволяет повысить общий уровень здоровья и, если это необходимо, помочь организму в борьбе с практически любым заболеванием.