Применение теоремы Гаусса для расчета электрических полей. Московский государственный университет печати Теорема гаусса формулировка

Задачу вычисления напряженности поля системы электрических зарядов, используя помощью принципа суперпозиции электростатических полей можно сильно облегчить, если применять открытую немецким ученым К. Гауссом (1777-1855) теорему, которая определяет поток вектора напряженности электрического поля сквозь произвольную замкнутую поверхность.

Из определения потока вектора напряженности сквозь замкнутую поверхность, поток вектора напряженности сквозь сферическую поверхность радиуса r, которая охватывает точечный заряд Q, находящийся в ее центре (рис. 1), равен

Этот результат справедлив для замкнутой поверхности произвольной формы. Действительно, если заключить сферу (рис. 1) в произвольную замкнутую поверхность, то каждая линия напряженности, которая пронизывает сферу, пройдет и сквозь эту поверхность.

В случае, если замкнутая поверхность любой формы охватывает заряд (рис. 2), то при пересечении любой линии напряженности с поверхностью она то входит в нее, то выходит из нее. При вычислении потока нечетное число пересечений в конечном счете сводится к одному пересечению, так как поток полагается положительным, если линии напряженности выходят из поверхности, и отрицательным для линий, которые входят в поверхнЕсли замкнутая поверхность не охватывает заряда, то поток сквозь нее равен нулю, так как число линий напряженности, которые входят в поверхность, равно числу линий напряженности, которые выходят из нее.

Значит, для поверхности произвольной формы, если она замкнута и заключает в себя точечный заряд Q, поток вектора Е будет равен Q/ε 0 , т. е.

Знак потока совпадает со знаком заряда Q.

Исследуем общий случай произвольной поверхности, окружающей n зарядов. Используя с принцип суперпозиции, напряженность Е поля, которая создавается всеми зарядами, равна сумме напряженностей E i полей, которые создаваются каждым зарядом в отдельности. Поэтому

Согласно (1), каждый из интегралов, который стоит под знаком суммы, равен Q i /ε 0 . Значит,

(2)

Формула (2) выражает теорему Гаусса для электростатического поля в вакууме : поток вектора напряженности электростатического поля в вакууме сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленной на ε 0 . Эта теорема получена математически для векторного поля произвольной природы русским математиком М.В.Остроградским (1801-1862), а затем независимо от него применительно к электростатическому полю - К. Гауссом.

В общем случае электрические заряды могут быть распределены с некоторой объемной плотностью ρ=dQ/dV, которая различна в разных местах пространства. Тогда суммарный заряд, заключенный внутри замкнутой поверхности S, которая охватывает некоторый объем V,

(3)

Используя формулу (3), теорему Гаусса (2) можно записать так:

Циркуляцией вектора напряженности называется работа, которую совершают электрические силы при перемещении единичного положительного заряда по замкнутому пути L

(13.18)

Так как работа сил электростатического поля по замкнутому контуру равна нулю (работа сил потенциального поля), следовательно циркуляция напряженности электростатического поля по замкнутому контуру равна нулю.

Потенциал электростатического поля. Поле консервативной силы может быть описано не только векторной функцией, но эквивалентное описание этого поля можно получить, определив в каждой его точке подходящую скалярную величину. Для электростатического поля такой величиной является потенциал электростатического поля , определяемый как отношение потенциальной энергии пробного заряда q к величине этого заряда,  = W п / q , откуда следует, что потенциал численно равен потенциальной энергии, которой обладает в данной точке поля единичный положительный заряд. Единицей измерения потенциала служит Вольт (1 В).

Потенциал поля точечного заряда Q в однородной изотропной среде с диэлектрической проницаемостью  :

Принцип суперпозиции. Потенциал есть скалярная функция, для неё справедлив принцип суперпозиции. Так для потенциала поля системы точечных зарядов Q 1, Q 2 , Q n имеем

,

где r i - расстояние от точки поля, обладающей потенциалом , до заряда Q i . Если заряд произвольным образом распределен в пространстве, то

,

где r - расстояние от элементарного объема dx , dy , dz до точки (x , y , z ), где определяется потенциал; V - объем пространства, в котором распределен заряд.

Потенциал и работа сил электрического поля. Основываясь на определении потенциала, можно показать, что работа сил электрического поля при перемещении точечного заряда q из одной точки поля в другую равна произведению величины этого заряда на разность потенциалов в начальной и конечной точках пути, A = q (     
Если по аналогии с потенциальной энергией считать, что в точках, бесконечно удалённых от электрических зарядов - источников поля, потенциал равен нулю, то работу сил электрического поля при перемещении заряда q из точки 1 в бесконечность можно представить как A   q  1 .
Таким образом, потенциал â данной точке электростатического поля - это физическая величина, численно равная работе, совершаемой силами электрического поля при перемещении единичного положительного точечного заряда из данной точки поля в бесконечно удаленную :  = A  / q .
В некоторых случаях потенциал электрического поля нагляднее определяется как физическая величина, численно равная работе внешних сил против сил электрического поля при перемещении единичного положительного точечного заряда из бесконечности в данную точку . Последнее определение удобно записать следующим образом:

В современной науке и технике, особенно при описании явлений, происходящих в микромире, часто используется единица работы и энергии, называемая электрон-вольтом (эВ). Это работа, совершаемая при перемещении заряда, равного заряду электрона, между двумя точками с разностью потенциалов 1 В: 1 эВ = 1,6010  Кл1 В = 1,6010  Дж

Эквипотенциальные поверхности - понятие, применимое к любому потенциальному векторному полю, например, к статическому электрическому полю или к ньютоновскому гравитационному полю. Эквипотенциальная поверхность - это поверхность, на которой скалярный потенциал данного потенциального поля принимает постоянное значение (поверхность уровня потенциала). Другое, эквивалентное, определение - поверхность, в любой своей точке ортогональная силовым линиям поля.

Поверхность проводника в электростатике является эквипотенциальной поверхностью. Кроме того, помещение проводника на эквипотенциальную поверхность не вызывает изменения конфигурации электростатического поля. Этот факт используется в методе изображений, который позволяет рассчитывать электростатическое поле для сложных конфигураций.

В (стационарном) гравитационном поле уровень неподвижной жидкости устанавливается по эквипотенциальной поверхности. В частности, приближенно можно утверждать, что по эквипотенциальной поверхности гравитационного поля Земли проходит уровень океанов . Форма поверхности океанов , продолженная на поверхность Земли, называется геоидом и играет важную роль в геодезии. Геоид, таким образом является эквипотенциальной поверхностью силы тяжести, состоящей из гравитационной и центробежной составляющей.

Электростатическое поле – это особый вид материи, с помощью которой происходит взаимодействие заряженных тел.

Закон Кулона :сила взаимодействия F между двумя неподвижными точечными зарядами q 1 и q 2 прямопропорциональна величинам этих зарядов и обратно пропорциональна квадрату расстояния r между ними:

Где (e 0 – электрическая постоянная);

e – диэлектрическая проницаемость среды, показывающая во сколько раз сила взаимодействия зарядов в данной среде меньше, чем в вакууме.

Элект­рические поля, которые создаются неподвижными электрическими зарядами, называ­ются электростатическими .

Напряженность электростатического поля в данной точке есть физическая величина , определяемая силой, действующей на пробный точечный положительный заряд q 0 , помещенный в эту точку поля, то есть:

Электростатическое поле может быть изображено графически с помощьюсиловых линий .Силовая линия - это такая линия, касательная в каждой точке к которой совпадает по направлению с вектором напряженности электростатическго поля в данной точке (рис. 1, 2).

Если поле создается точечным зарядом, то силовые линии – это радиальные прямые, выходящие из положительного заряда (рис. 2, а ), и входя­щие в отрицательный заряд (рис. 2, б ).

Рис. 1 Рис. 2

С помощью силовых линий можно характеризовать не только направление, но и величину напряженности электростатического поля, связывая ей с густотой силовых линий. Большей густоте силовых линий соответствует большая величина напряженности (рис. 1, 2). Количественно числу силовых линий, прони­зывающих единичную площадку, расположенную перпендикулярно силовым линиям, ставится в соответствие величина напряженности электростатического поля. В этом случае определенному заряду q , создающему поле, соответствует определенное число N силовых линий, выходящих (для ) из заряда или входящих (для ) в заряд, а именно: .

Поток вектора напряженности электростатического поля через произвольную площадку S характкризуется числом силовых линий, пронизывающих данную площадку S.

Если площадка S перпендикулярна силовым линиям (рис. 3), то поток Ф Е вектора напряженности через данную площадку S : .

Рис. 3 Рис. 4

Рис. 3
Если же площадка S расположена неперпендикулярно силовым линиям электро-статического поля (рис. 4), то поток вектора через данную площадку S :

,

где α – угол между векторами напряженности и нормали к площадке S .

Для того, чтобы найти поток Ф Е вектора напряженности через произвольную поверхность S , необходиморазбить эту поверхность на элементарные площадки dS (рис. 5),определить элементарный поток dФ Е через каждую площадку dS по формуле:

,

а затем все эти элементарные потоки dФ Е сложить, что приводит к интегрированию:

,

где α – угол между векторами напряженности и нормали к данной элементарной площадке dS .

Если ввести вектор (рис. 5) как вектор, равный по величине площади площадки dS и направленный по вектору нормали к площадке dS , то величина , где a – угол между векторами и может быть записана в виде скалярного произведения векторов и , то есть, как , а полученное соотношение для потока вектора примет вид:

.

Теорема Остроградского - Гаусса для электростатического поля.

Теорема Остроградского - Гаусса для электростатического поля связывает между собой величину потока Ф Е вектора напряженности электростатического поля в вакууме через произвольную замкнутую поверхность S с величинойзаряда q , заключенного внутри данной замкнутой поверхности S (рис. 6).

Рис. 6
Поскольку все силовые линии, выходящие из заряда (для ) или входящие в заряд (для ), пронизываютпроизвольную замкнутую поверхность S , охватывающую этот заряд (рис. 6), то величина потока Ф Е вектора через эту поверхность S будет определяться числом N силовых линий выходящих из заряда (для ) или входящих в заряд (для ):

.

Это соотношение есть теорема Остроградского-Гаусса для электростатического поля.

Таккак поток считается положитель­ным, если силовые линии выходят из поверхности S , и отрицательным для линий, входящих в поверхность S, то в случае, если внутри произвольной замкнутой поверхности S находится не один, а несколько (n ) разноименных зарялов, то теорема Остроградского - Гаусса для электростатического поля формулируется следующим образом:

поток вектора напряженности электростатического поля в вакууме через произ­вольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленной на e 0 :

.

Тема 2. Работа сил электростатического поля. Потенциал

Если в электростатическом поле, создаваемом точечным зарядом q , перемещается другой пробный заряд q 0 из точки 1 в точку 2 вдоль произвольной траектории (рис. 7), то при этом совершается работа сил электростатического поля.

Элементарная работа dA силы на элементарном перемещении равна: .

Из рисунка 7 видно, что .

Тогда ().

Работа А при перемещении заряда q 0 вдоль траектории от точки 1 до точки 2 :

То есть работа при перемещении заряда из точки 1 в

точку 2 в электростатическом поле не зависит от траектории перемещения, а определяется только положениями начальной и конечной точек. Поэтому электростатическое поле точечного заряда является потенциальным .

Работа, совершаемая силами электростатического поля при перемещении заряда q 0 из точки 1 в точку 2 , выражается следующим образом:

,

где φ 1 и φ 2 потенциалы электростатического поля в точках 1 и 2 .

Потенциал электростатического поля определяется с точностью до произвольной аддитивной постоянной С , то есть для поля точечного заряда q :

.

Тогда , .

Разность потенциалов двух точек 1 и 2 в электростатическом поле определяется работой, совершаемой силами электростатического поля, при перемещении пробного точечного заряда q 0 из точки 1 в точку 2 :

.

Связь между напряженностью и потенциалом электростатического поля

Напряженность и потенциал φ электростатического поля связаны между собой следующим образом:

= – grad φ

или , где

– единичные векторы координатных осей Ох , Оy , Оz , соответственно.

Знак минус в приведенной формуле означает, что вектор напряженности электростатического поля направлен в сторону максимального убывания потенциала j .

Для графического изображения распределения потенциала электростатического поля используютсяэквипотенциальные поверхности, то естьповерхности, во всех точках которых потенциал j имеет одно и то же значение.

Например, для поля, созданного точечным зарядом q , потенциал j определяется выражением: , а эквипотенциальными поверхностями являются кон­центрические сферы (рис. 8).

Из этого рисунка видно, что в случае точечного заряда силовые линии поля (штриховые линии на рисунке) нормальны (перпендикулярны) к эквипотенциальным поверхностям (сплошные линии на рисунке).

Это свойство нормального взаимного расположения силовых линий и эквипотенциальных поверхностей электростатического поля является общим для любых случаев электростатического поля.

Таким образом, зная расположение силовый линий электростатического поля, можно построить эквипотенциальные поверхности этого электростатического поля и, наоборот, по известному расположению эквипотенциальных поверхностей электростатического поля можно построить силовые линии электростатического поля.

Магнитное поле

Тема 3. Магнитное поле. Закон Био-Савара-Лапласа

Электрический ток создает поле, действующее на магнитную стрелку. Стрелка ориентируется по касательной к окружности, лежащей в плоскости, перпендикуляной к проводнику с током (рис. 9).

Основной характеристикой магнитного поля является вектор индукция . Принято, что вектор индукция магнитного поля направлен в сторону север-ного полюса магнитной стрелки, помещенной в данную точку поля (рис. 9).

По аналогии с электрическим полем, магнитное поле также может быть изображено графически с помощью силовых линий (линий индукции магнитного поля ).

Силовая линия – это такая линия, касательная к которой в каждой точке совпадает по направлению с вектором индукции магнитного поля. Силовые линии магнитного поля, в отличие от силовых линий электростатического поля, являются замкнутыми и охватывают проводники с током. Направление силовых линий задается правилом правого винта (правилом буравчика): головка винта, ввинчиваемого по направлению тока, враща­ется в направлении линий Рис. 9

магнитной индукции (рис. 9).

Для нескольких источников магнитного поля согласно принципу суперпозиции магнитных полей индукция результирующего магнитного поля равна векторной сумме индукций всех отдельных магнитных полей:

Вектор индукции магнитного поля, создаваемого проводником с током , можно определить с помощью закона Био-Савара-Лапласа. При этомнеобходимо учесть то, что закон Био-Савара-Лапласа позволяет найти модуль и направление лишьвектора индукции магнитного поля, создаваемого элементом проводника с током . Поэтому для определения вектора индукции магнитного поля, создаваемого проводником с током , необходимо первоначально разбить этот проводник на элементы проводника , для каждого элемента с помощью закона Био-Савара-Лапласа найти вектор индукции , а затем, используя принцип суперпозиции магнитных полей, сложить векторно все найденные вектора индукции .

Как было сказано выше, силовые линии условились проводить с такой густотой, чтобы количество линий, пронизывающих единицу поверхности, перпендикулярной к линиям площадки, было бы равно модулю вектора . Тогда по картине линий напряженности можно судить не только о направлении, но и величине вектора в различных точках пространства.

Рассмотрим силовые линии неподвижного положительного точечного заряда. Они представляют собой радиальные прямые, выходящие из заряда и заканчивающиеся на бесконечности. Проведем N таких линий. Тогда на расстоянии r от заряда число силовых линий, пересекающих единицу поверхности сферы радиуса r , будет равно . Эта величина пропорциональна напряженности поля точечного заряда на расстоянии r. Число N всегда можно выбрать таким, чтобы выполнялось равенство

откуда . Поскольку силовые линии непрерывны, то такое же число силовых линий пересекает замкнутую поверхность любой формы, охватывающую заряд q. В зависимости от знака заряда силовые линии либо входят в эту замкнутую поверхность, либо выходят наружу. Если число выходящих линий считать положительным, а входящих – отрицательным, то можно опустить знак модуля и записать:

. (1.4)

Поток вектора напряженности. Поместим в электрическое поле элементарную площадку, имеющую площадь . Площадка должна быть настолько малой, чтобы напряженность электрического поля во всех ее точках можно было считать одинаковой. Проведем нормаль к площадке (рис. 1.17). Направление этой нормали выбирается произвольно. Нормаль составляет угол с вектором . Потоком вектора напряженности электрического поля через выделенную поверхность называется произведение площади поверхности на проекцию вектора напряженности электрического поля на нормаль к площадке:

где – проекция вектора на нормаль к площадке .

Поскольку число силовых линий, пронизывающих единичную площадку, равно модулю вектора напряженности в окрестности выделенной площадки, то поток вектора напряженности через поверхность пропорционален числу силовых линий, пересекающих эту поверхность. Поэтому, в общем случае, наглядно поток вектора напряженности поля через площадку можно интерпретировать как величину, равную числу силовых линий, пронизывающих эту площадку:

. (1.5)

Заметим, что выбор направления нормали условен, ее можно направить и в другую сторону. Следовательно, поток – величина алгебраическая: знак потока зависит не только от конфигурации поля, но и от взаимной ориентации вектора нормали и вектора напряженности. Если эти два вектора образуют острый угол, поток положителен, если тупой – отрицателен. В случае замкнутой поверхности принято нормаль брать наружу области, охватываемой этой поверхностью, то есть выбирать внешнюю нормаль.

Если поле неоднородно и поверхность произвольна, то поток определяется так. Всю поверхность надо разбить на малые элементы площадью , вычислить потоки напряженности через каждый из этих элементов, а потом просуммировать потоки через все элементы:

Таким образом, напряженность поля характеризует электрическое поле в точке пространства. Поток напряженности зависит не от значения напряженности поля в данной точке, а от распределения поля по поверхности той или иной площади.

Силовые линии электрического поля могут начинаться только на положительных зарядах и заканчиваться на отрицательных. Они не могут начинаться или обрываться в пространстве. Поэтому, если внутри некоторого замкнутого объема нет электрического заряда, то полное число линий, входящих в данный объем и выходящих из него, должно равняться нулю. Если из объема выходит больше линий, чем входит в него, то внутри объема находится положительный заряд; если входит линий больше, чем выходит, то внутри должен быть отрицательный заряд. При равенстве полного заряда внутри объема нулю или при отсутствии в нем электрического заряда линии поля пронизывают его насквозь, и полный поток равен нулю.

Эти простые соображения не зависят от того, как электрический заряд распределен внутри объема. Он может находиться в центре объема или вблизи поверхности, ограничивающей объем. В объеме может находиться несколько положительных и отрицательных зарядов, распределенных внутри объема любым способом. Только суммарный заряд определяет полное число входящих или выходящих линий напряженности.

Как видно из (1.4) и (1.5), поток вектора напряженности электрического поля через произвольную замкнутую поверхность, охватывающую заряд q, равен . Если внутри поверхности находится n зарядов, то, согласно принципу суперпозиции полей, полный поток будет складываться из потоков напряженностей полей всех зарядов и будет равен , где под в этом случае подразумевается алгебраическая сумма всех зарядов, охватываемых замкнутой поверхностью.

Теорема Гаусса. Гаусс первым обнаружил тот простой факт, что поток вектора напряженности электрического поля через произвольную замкнутую поверхность должен быть связан с полным зарядом, находящимся внутри этого объема:

Гаусс Карл Фридрих (1777–1855)

Великий немецкий математик, физик и астроном, создатель абсолютной системы единиц в физике. Разработал теорию электростатического потенциала и доказал важнейшую теорему электростатики (теорема Гаусса). Создал теорию построения изображений в сложных оптических системах. Одним из первых пришел к мысли о возможности существования неевклидовой геометрии. Кроме того, Гаусс внес выдающийся вклад практически во все разделы математики.

Последнее соотношение и представляет собой теорему Гаусса для электрического поля:поток вектора напряженности через произвольную замкнутую поверхность пропорционален алгебраической сумме зарядов, расположенных внутри этой поверхности.Коэффициент пропорциональности зависит от выбора системы единиц.

Следует отметить, что теорема Гаусса получается как следствие закона Кулона и принципа суперпозиции. Если бы напряженность электрического поля изменялась бы не обратно пропорционально квадрату расстояния, то теорема оказалась бы несправедливой. Поэтому теорема Гаусса применима к любым полям, в которых строго выполняется закон обратных квадратов и принцип суперпозиции, например, к гравитационному полю. В случае гравитационного поля роль зарядов, создающих поле, играют массы тел. Поток линий гравитационного поля через замкнутую поверхность пропорционален полной массе, заключенной внутри этой поверхности.

Напряженность поля заряженной плоскости. Применим теорему Гаусса для определения напряженности электрического поля бесконечной заряженной плоскости. Если плоскость бесконечна и заряжена равномерно, то есть поверхностная плотность заряда одинакова в любом ее месте, то линии напряженности электрического поля в любой точке перпендикулярны этой плоскости. Чтобы показать это, воспользуемся принципом суперпозиции для вектора напряженности. Выделим два элементарных участка на плоскости, которые можно считать точечными для точки А , в которой необходимо определить напряженность поля. Как видно из рис. 1.18, результирующий вектор напряженности будет направлен перпендикулярно плоскости. Поскольку плоскость можно разбить на бесконечное количество пар таких участков для любой точки наблюдения, то, очевидно, что силовые линии поля заряженной плоскости перпендикулярны к плоскости, и поле является однородным (рис. 1.19). Если бы это было не так, то при перемещении плоскости вдоль самой себя поле в каждой точке пространства менялось, но это противоречит симметрии заряженной системы (плоскость бесконечна). В случае положительно заряженной плоскости силовые линии начинаются на плоскости и заканчиваются на бесконечности, а для отрицательно заряженной плоскости силовые линии начинаются на бесконечности и входят в плоскость.

Рис. 1.18 Рис. 1.19

Для определения напряженности электрического поля бесконечной положительно заряженной плоскости мысленно выделим в пространстве цилиндр, ось которого перпендикулярна заряженной плоскости, а основания параллельны ей, и одно из оснований проходит через интересующую нас точку поля (рис. 1.19). Цилиндр вырезает из заряженной плоскости участок площадью , и такую же площадь имеют основания цилиндра, расположенные по разные стороны от плоскости.

Согласно теореме Гаусса поток вектора напряженности электрического поля через поверхность цилиндра связан с электрическим зарядом внутри цилиндра выражением:

.

Так как линии напряженности пересекают лишь основания цилиндра, поток через боковую поверхность цилиндра равен нулю. Поэтому поток вектора напряженности через цилиндрическую поверхность будет складываться только из потоков через основания цилиндра, следовательно,

Сравнивая два последних выражения для потока вектора напряженности, получим

Напряженность электрического поля между разноименно заряженными пластинами. Если размеры пластин значительно превосходят расстояние между ними, то электрическое поле каждой из пластин можно считать близким к полю бесконечной равномерно заряженной плоскости. Так как линии напряженности электрического поля разноименно заряженных пластин между пластинами направлены в одну сторону (рис. 1.20), то напряженность поля между пластинами равна

.

Во внешнем пространстве линии напряженности электрического поля разноименно заряженных пластин имеют противоположные направления, поэтому вне этих пластин результирующая напряженность электрического поля равна нулю. Полученное для напряженности выражение справедливо для больших заряженных пластин, когда напряженность определяется в точке, расположенной далеко от их краев.

Напряженность электрического поля равномерно заряженной тонкой проволоки бесконечной длины. Найдем зависимость напряженности электрического поля равномерно заряженной тонкой проволоки бесконечной длины от расстояния до оси проволоки, используя теорему Гаусса. Выделим участок проволоки конечной длины . Если линейная плотность заряда на проволоке , то заряд выделенного участка равен .

Эта теорема представляет собой только следствие закона Кулона и принципа суперпозиции электрических полей. Вот её формулировка:

Поток вектора напряжённости электрического поля через замкнутую поверхность в вакууме равен алгебраической сумме электрических зарядов, заключённых внутри этой поверхности, делённой на электрическую постоянную 0 .

Доказательство теоремы начнём с простейшего случая: вычислим поток вектора напряжённости поля точечного заряда Q .

Напряжённость этого поля хорошо известна (см. 1.3)

Учитывая сферическую симметрию поля, выберем вначале в качестве гауссовой замкнутой поверхности сферу радиусом r , с центром в той точке, где находится зарядQ (рис. 2.5., 1). Поток вектора напряжённости через эту поверхность вычислить легко

Здесь мы учли, что:

Рис. 2.5.

Учитывая последнее замечание, запишем поток (2.7) в следующем виде:

(2.8)

Таким образом, для первого простейшего случая теорема Гаусса оказалась справедливой. Что из этого следует?

    Полученный результат позволяет заключить, что найденный поток не зависит от радиуса гауссовой поверхности. Это легко понять: ведь с увеличением расстояния от заряда Q площадь поверхностирастёт пропорционально квадрату радиуса, а напряжённость поляубывает обратно пропорционально квадрату радиуса.

    Вспомним, кроме того, что поток вектора напряжённости равен числу силовых линий, пронизывающих гауссову поверхность. Независимость потока от радиуса поверхности означает, что силовые линии поля точечного заряда, начинаясь на положительном заряде, простираются далее до бесконечности, не прерываясь. Отсюда - дальнейшие выводы.

    Поток вектора напряжённости поля точечного заряда через любую замкнутую поверхность (рис. 2.5, 2),охватывающую точечный заряд Q , равен отношению

Этот вывод несомненен, так как поток равен прежнему неизменному числу силовых линий, пронизывающий замкнутую поверхность.

    Поток вектора напряжённости, через произвольную замкнутую поверхность, не охватывающую электрический заряд, равен нулю (рис. 2.5, 3).

Этот вывод также легко понять, так как число силовых линий втекающих в гауссову поверхность, равно числу линий, покидающих её. Поэтому суммарный поток через эту поверхность равен нулю.

Теперь можно обратиться к рассмотрению общего случая: пусть произвольная замкнутая поверхность S охватываетN точечных зарядов (рис. 2.6.). Вычислим поток вектора напряжённости суммарного поля через эту поверхностьS, учтя, что в соответствии с принципом суперпозиции результирующее поле равно векторной сумме отдельных полей

Рис. 2.6.

Итак, воспользовавшись определением потока, вычислим его через произвольную замкнутую поверхность S .

(2.9)

Полученный результат является доказательством справедливости теоремы Гаусса: поток вектора напряжённости электростатического поля в вакууме через любую замкнутую поверхность пропорционален алгебраической сумме зарядов, заключенных внутри этой поверхности .

Произведение напряженности электрического поля E и такой плоской площадки S, во всех точках которой напряженность поля одинакова и перпендикулярная к ней, составляет поток N вектора напряженности через площадку S;

N = ES (6)

Если вектор напряженности не перпендикулярен к площадке, то необходимо определять составляющую вектора напряженности перпендикулярную к площадке, которую называют нормальной составляющей (рис. 1):

N = E n S = (E*cosβ)S

При вычислении потока через произвольную поверхность площадью S в неоднородном поле эту поверхность следует разбить на малые плоские элементы dS в пределах каждого из которых напряженность поля можно считать одинаковой; поток через отдельную элементарную площадку

dN = E n dS

Поток вектора напряженности через произвольную замкнутую поверхность находится суммированием (интегрированием) элементарных потоков:

Единицу измерения потока вектора напряженности найдем из формулы (6):

[N] = = В/м *м 2 = В*м (8)

Рис.1 Нормальная составляющая вектора напряженности электрического поля, Рис.2 электрический заряд внутри сферической поверхности

В качестве примера найдем поток вектора напряженности поля точечного заряда Q, помещенного в центре сферической (шаровой) поверхности радиуса R (рис. 2).
Напряженность поля заряда Q одинакова во всех точках этой поверхности и согласно ()

Так как векторы напряженности перпендикулярны к сферической поверхности, то E n = E и проходящий через поверхность поток вектора напряженности поля

Как видно из (9), полученное для частного случая сферической поверхности выражение потока не зависит ни от формы поверхности, ни от места расположения заряда внутри нее. Поэтому формула (9) справедлива для замкнутой поверхности любой формы и произвольно расположенных внутри нее зарядов, суммарное значение которых равно Q.

Итак, поток вектора напряженности электрического поля сквозь замкнутую поверхность равен отношению сумм зарядов, расположенных внутри этой поверхности, к абсолютной диэлектрической проницаемости среды. Получена соотношение называют теоремой Гаусса.

Наглядно поток изображают электрическими линиями, так чтобы вектор напряженности поля в любой точке был касательным к электрической линии, проведенной через
эту точку. Электрические линия поля неподвижных зарядов начинаются на положительных зарядах и заканчиваются на отрицательных. Число линий, пересекающих данную площадку, выбирают пропорциональным значению потока N через эту площадку. На показан электрические линии точечного заряда + Q 1 .

Электрическое поле неподвижных зарядов называют электростатическим.