Примерный расчет элементов зубчатого колеса. Нарезание зубьев червячными фрезами Расчет зубов в делительной головке

С точки зрения технологии и кинематики такой процесс, как нарезание зубчатых колес , является одной из самых сложных операций, выполняемых в процессе обработки заготовок на металлорежущих станках. Операции по нарезанию зубчатых коле с относятся к разряду весьма трудоемких, поскольку в процессе их осуществления требуется удалить немалый объем металла для того, чтобы обеспечить необходимую геометрическую конфигурацию готового изделия, причем таким образом, чтобы было обеспечено точное соответствие профилей зубьев расчетным параметрам.

Процедура нарезания зубьев на зубчатых колесах предполагает применение таких технологических процессов, как фрезерование, строгание, шлифование, долбление, протягивание, накатывание, а также некоторые другие.

Для достижения необходимой конфигурации профиля зуба при нарезании зубчатых колес используется два основных метода: обкатывание (огибание) и копирование (деление).

Метод копирования при нарезании зубчатых колес

Согласно этому распространенному методу при нарезании зубчатых колес методом копирования та впадина, которая располагается между зубьями, прорезается специализированным режущим инструментом (протяжкой, дисковой или пальчиковой фрезой, резцом, шлифовальным кругом), который имеет тот же профиль, что и сами режущие кромки. По технологии, он должен совпадать с тем профилем, который имеет впадина обрабатываемого колеса.

При использовании фрезерных станков для нарезания зубчатых колес методом копирования применяются дисковые модульные фрезы. Отдельно с каждым единичным делением нарезается строго определенный зуб колеса.

Чаще всего при помощи дисковых фрез производится нарезание зубьев на зубчатых колесах, которые используются в качестве запасных частей различных машин и механизмов. Это метод эффективен при изготовлении штучных изделий или небольших их партий. Следует заметить, что он не позволяет достичь высокой точности изготовления готовой продукции.

Нарезание зубьев с помощью дисковой фрезы производится следующим образом: заготовка закреплена в делительной головке, расположенной на столе фрезерного станка; он совершает поступательное движение на продольной подаче к фрезе, которая вращается, будучи закрепленной в шпинделе. Благодаря этому в заготовке прорезается паз, соответствующий конфигурации впадины, расположенной между зубьев. По окончании одной операции этого процесса при помощи делительной головки заготовка поворачивается и фиксируется в следующем положении, а процесс обработки повторяется заново, и так до тех пор, пока не будут нарезаны все зубья.

Методы зубонарезания

Пальчиковые модульные фрезы в большинстве случаев используются для того, чтобы производить нарезание зубчатых колес имеющих крупный модуль, на фрезерных станках. Обязательным условием успешного выполнения таких работ квалифицированным персоналом является необходимая конфигурация режущего инструмента: профиль как пальцевых, так и дисковых фрез обязательно должен совпадать с тем профилем, который имеют впадины, расположенные между зубьями обрабатываемого колеса.

Режим работы пальчиковых фрез достаточно сложен: они испытывают на себе ощутимые нагрузки, и поэтому нередко происходят их «отжимы», негативно влияющие на точность обрабатываемых изделий. Кроме того, нужно учитывать то обстоятельство, что режущий инструмент имеет конусную форму, а это означает, что при обработке им нельзя использовать повышенные режимы резания.

Метод обкатывания при нарезании зубчатых колес

При нарезании зубчатых колёс методом обкатки образование формы зуба зубчатого колеса происходит с помощью обкатки зубчатой пары, составным элементом которой является сама заготовка, а другим режущий инструмент. На практике его целесообразно использовать только при массовом производстве, поскольку необходимо изготавливать высокоточный инструмент (специальные фрезы).

Еще одним довольно распространенным способом производства зубчатых колес является применение червячных фрез. Этот режущий инструмент имеет трапецеидальную форму в нормальном сечении, а с точки зрения геометрической конфигурации является зубом рейки с определенными передними и задними углами заточки.

Нарезание зубьев при помощи червячных фрез осуществляется традиционным способом: режущему инструменту сообщается вращательное движение, а заготовке – поступательное в комбинации с вращательным. В результате такой комбинации движений получаются эвольвентные профили зубьев колес.

Для изготовления зубчатых колес используются и так называемые долбяки. Они, наряду с червячными фрезами, являются универсальными инструментами. Если говорить обо всех используемых методах изготовления зубчатых колес, то среди них наиболее производительным и точным является обкатывание.

ПОРЯДОК ПОЛЬЗОВАНИЯ ТАБЛИЦАМИ / ПРОГРАММОЙ

Для подбора сменных колес искомое передаточное отношение выражается в виде десятичной дроби с числом знаков соответственно требуемой точности. В «Основных таблицах» для подбора зубчатых колес (стр. 16-400) находим колонку с заголовком, содержащим первые три цифры передаточного отношения; по остальным цифрам находим строку, на которой указаны числа зубьев ведущих и ведомых колес.

Требуется подобрать сменные колеса гитары для передаточного отношения 0,2475586. Сначала находим колонку с заголовком 0,247-0000, а под ним ближайшее значение к последующим десятичным знакам искомого передаточного отношения (5586). В таблице находим число 5595, соответствующее набору сменных колес (23*43) : (47*85). Окончательно получаем:

i = (23*43)/(47*85) = 0,2475595. (1)

Относительная погрешность сравнительно с заданным передаточным отношением:

δ = (0,2475595 - 0,2475586) : 0,247 = 0,0000037.

Строго подчеркиваем: во избежание влияния возможной опечатки нужно обязательно проверить полученное соотношение (1) на калькуляторе. В тех случаях, когда передаточное отношение больше единицы, необходимо выразить его обратную величину в виде десятичной дроби, по найденному значению в таблицах отыскать числа зубьев ведущих и ведомых сменных колес и поменять ведущие и ведомые колеса местами.

Требуется подобрать сменные колеса гитары для передаточного отношения i = 1,602225. Находим обратную величину 1:i = 0,6241327. В таблицах для ближайшего значения 0,6241218 находим набор сменных колес: (41*65) : (61*70). Учитывая, что решение найдено для обратной величины передаточного отношения, меняем местами ведущие и ведомые колеса:

i = (61*70)/(41*65) = 1,602251

Относительная погрешность подбора

δ = (1,602251 - 1,602225) : 1,602 = 0,000016.

Обычно требуется подбирать колеса для передаточных отношений, выраженных с точностью до шестого, пятого, а в отдельных случаях и до четвертого десятичного знака. Тогда семизначные числа, приведенные в таблицах, можно округлять с точностью до соответствующего десятичного знака. Если имеющийся комплект колес отличается от нормального (см. стр. 15), то, например, при настройке цепей дифференциала или обкатки можно выбрать подходящую комбинацию из ряда соседних значений с погрешностью, удовлетворяющей условиям, изложенным на стр. 7-9. При этом некоторые числа зубьев можно заменять. Так, если число зубьев комплекта не свыше 80, то

(58*65)/(59*95) = (58*13)/(59*19) = (58*52)/(59*76)

«пятковую» комбинацию предварительно преобразуют так:

(25*90)/(70*85) = (5*9)/(7*17)

а затем, по полученным множителям подбирают числа зубьев.

ОПРЕДЕЛЕНИЕ ДОПУСТИМОЙ ПОГРЕШНОСТИ НАСТРОЙКИ

Очень важно различать абсолютную и относительную погрешности настройки. Абсолютной погрешностью называют разность между полученным и требуемым передаточными отношениями. Например, требуется иметь передаточное число i = 0,62546, а получено i = 0,62542; абсолютная погрешность будет 0,00004. Относительной погрешностью называют отношение абсолютной погрешности к требуемому передаточному числу. В нашем случае относительная погрешность

δ = 0.00004/0,62546 = 0,000065

Следует подчеркнуть необходимость суждения о точности настройки по относительной погрешности.

Общее правило.

Если какая-либо величина А, получаемая настройкой через данную кинематическую цепь, пропорциональна передаточному отношению i, то при относительной погрешности настройки δ абсолютная погрешность будет Аδ.

Например, если относительная погрешность передаточного отношения δ =0,0001, то при нарезании винта с шагом t отклонение в шаге, зависящее от настройки, будет 0,0001 * t. Та же относительная погрешность при настройке дифференциала зубофрезерного станка даст дополнительное вращение заготовки не на требуемую дугу L, а на дугу с отклонением 0,0001 * L.

Если указан допуск на изделие, то абсолютное отклонение размера вследствие неточности настройки должно составлять только некоторую долю этого допуска. В случае более сложной зависимости какой-либо величины от передаточного отношения полезно прибегать к замене фактических отклонений их дифференциалами.

Настройка цепи дифференциала при обработке винтовых изделий.

Типичной является следующая формула:

i = c*sinβ/(m*n)

где с - постоянная цепи;

β - угол наклона винтовой линии;

m - модуль;

n - число заходов фрезы.

Продифференцировав обе части равенства, получим абсолютную погрешность di передаточного отношения

di = (c*cosβ/m*n)dβ

тогда допустимая относительная погрешность настройки

δ = di/i = dβ/tgβ

Если допустимое отклонение угла винтовой линии dβ выразить не в радианах, а в минутах, то получим

δ = dβ/3440*tgβ (3)

Например, если угол наклона винтовой линии изделия β = 18°, а допустимое отклонение в направлении зуба dβ = 4" = 0",067, то допустимая относительная погрешность настройки

δ = 0,067/3440*tg18 = 0,00006

Наоборот, зная относительную погрешность взятого передаточного отношения, можно по формуле (3) определить допущенную погрешность в угле винтовой линии в минутах. При установлении допустимой относительной погрешности можно в подобных случаях пользоваться тригонометрическими таблицами. Так, в формуле (2) передаточное отношение пропорционально sin β. По тригонометрическим таблицам для взятого числового примера видно, что sin 18° = 0,30902, а разность синусов на 1" составляет 0,00028. Следовательно, относительная погрешность на 1" составляет 0,00028: 0,30902 = 0,0009. Допустимое отклонение винтовой линии - 0,067, поэтому допустимая погрешность передаточного отношения 0,0009*0,067 = 0,00006, такая же, как и при расчете по формуле (3). Когда оба сопряженных колеса нарезаются на одном станке и по одной настройке цепи дифференциала, то погрешности в направлении линий зубьев допускаются значительно большие, так как у обоих колес отклонения одинаковы и незначительно влияют только на боковой зазор при зацеплении сопряженных колес.

Настройка цепи обкатки при обработке конических колес.

В этом случае формулы настройки выглядят так:

i = p*sinφ/z*cosу или i = z/p*sinφ

где z - число зубьев заготовки;

р - постоянная цепи обкатки;

φ - угол начального конуса;

у - угол ножки зуба.

Пропорциональным передаточному отношению оказывается радиус основной окружности. Исходя из этого, можно установить допустимую относительную погрешность настройки

δ = (Δα)*tgα/3440

где α - угол зацепления;

Δα - допустимое отклонение угла зацепления в минутах.

Настройка при обработке винтовых изделий.

Формула настройки

δ = Δt/t или δ = ΔL/1000

где Δt - отклонение в шаге винта за счет настройки;

ΔL - накопленная погрешность в мм на 1000 мм длины резьбы.

Величина Δt дает абсолютную ошибку шага, а величина ΔL характеризует по существу относительную погрешность.

Настройка с учетом деформации винтов после обработки.

При нарезании метчиков с учетом усадки стали после последующей термической обработки или с учетом деформации винта вследствие нагревания при механической обработке, процент усадки или расширения непосредственно указывает на необходимое относительное отклонение в передаточном отношении сравнительно с тем, какое получилось бы без учета этих факторов. В этом случае относительное отклонение передаточного отношения в плюс или минус является уже не ошибкой, а преднамеренным отклонением.

Настройка делительных цепей. Типичная формула настройки

где р - постоянная;

z - число зубьев или других делений на один оборот заготовки.

Нормальный комплект из 35 колес обеспечивает абсолютно точную настройку до 100 делений, так как в числах зубьев колес содержатся все простые множители до 100. В такой настройке погрешность вообще недопустима, так как она равна:

где Δl - отклонение линии зуба на ширине заготовки В в мм;

пD - длина начальной окружности или соответствующей другой окружности изделия в мм;

s - подача вдоль оси заготовки на один ее оборот в мм.

Только в грубых случаях эта погрешность может не играть роли.

Настройка зубофрезерных станков при отсутствии требуемых множителей в числах зубьев сменных колес.

В таких случаях (например, при z = 127) можно настроить гитару деления приближенно на дробное число зубьев, а необходимую поправку произвести, используя дифференциал . Обычно формулы настройки гитар деления, подач и дифференциала выглядят так:

x = pa/z ; y = ks ; φ = c*sinβ/ma

Здесь р, k, с - соответственно постоянные коэффициенты этих цепей; а - число заходов фрезы (обычно а = 1).

Настраиваем указанные гитары согласно формулам

x = paA/Az+-1 ; y = ks ; φ" = пc/asA

где z - число зубьев обрабатываемого колеса;

А - произвольное целое число, выбираемое так, чтобы числитель и знаменатель передаточного отношения разлагались на множители, подходящие для подбора сменных колес.

Знак (+) или (-) также выбирается произвольно, что облегчает разложение на множители. При работе правой фрезой, если выбран знак (+), промежуточные колеса на гитарах ставятся так, как это делают согласно руководству по работе на данном станке для правовинтовой заготовки; если выбран знак (-), промежуточные колеса ставят, как для левовинтовой заготовки; при работе левой фрезой - наоборот.

Желательно выбирать А в пределах

тогда передаточное отношение цепи дифференциала будет от 0,25 до 2.

Особо необходимо подчеркнуть, что при взятых сменных колесах на гитару подач фактическая подача должна быть определена для подстановки в формулу настройки дифференциала с большой точностью. Лучше рассчитать ее по кинематической схеме станка, так как постоянный коэффициент k в формуле настройки подач в руководстве к станку иногда дается приближенно. При несоблюдении этого указания зубья колеса могут вместо прямых получиться заметно скошенными.

Рассчитав подачу, практически получают по первым двум формулам (4) точную настройку. Тогда допустимая относительная погрешность в настройке гитары дифференциала

δ = sA*Δl/пmb (5)

де b - ширина зубчатого венца заготовки;

Δl - допустимое отклонение направления зуба на ширине венца в мм.

В случае нарезания колес с винтовыми зубьями нужно с помощью дифференциала сообщить фрезе дополнительное вращение для образования винтовой линии и дополнительное вращение для компенсации разности между требуемым числом делений и фактически настраиваемым числом делений. Получаются формулы настройки:

x = paA/Az+-1 ; y = ks ; φ" = c*sinβ/ma +- пc/asA

В формуле для x знак (+) или (-) выбирается произвольно. В этих случаях:

1) если направление винта у фрезы и заготовки одинаковое в формуле для φ" принимают тот же знак, какой выбран в формуле для х;

2) если направление винта у фрезы и заготовки разное, то в формуле для φ" принимают знак, обратный выбранному для х.

Промежуточные колеса на гитарах расставляют, как указано в инструкции к данному станку, согласно направлению винтовых зубьев. Только в случае, если окажется, что φ"

Бездифференциальная настройка.

В ряде случаев при обработке винтовых изделий можно использовать более жесткие бездифференциальные станки, если не требуется вторичного прохода обрабатываемых впадин с той же установки и при точном попадании во впадину. Если наладка станка производится при заранее определенной подаче, обусловленной малым числом сменных колес или наличием коробки подач, то настройка цепи деления требует большой точности, т. е. она должна производиться как прецизионная. Допустимая относительная погрешность

δ = Δβ*s/(10800*D*cosβ*cosβ)

где Δβ - отклонение винтовой линии изделия в минутах;

D - диаметр начальной окружности (или цилиндра) в мм;

β - угол наклона зуба заготовки к ее оси;

s - подача на один оборот заготовки вдоль ее оси в мм.

Чтобы избежать трудоемкой прецизионной настройки, поступают следующим образом. Если для гитары подач можно использовать достаточно большой комплект колес (25 и более, в частности нормальный комплект и таблицы данной книги), то сначала считают заданную подачу s ориентировочной. Настроив цепь деления и считая настройку вполне точной, определяют, какой для этого должна быть осевая подача s".

Обычную формулу цепи деления переписывают так:

x = (p/z)*(T/T+-z") = ab/cd (6)

где р - постоянный коэффициент цепи деления;

z - число делений изделия (зубьев, канавок);

T = пmz/sinβ - шаг винтовой линии заготовки в мм (он может быть определен и другим путем);

s" - подача инструмента вдоль оси заготовки на один оборот в мм. Знак (+) принимают при разных направлениях винта фрезы и заготовки; знак (-) при одинаковых.

Подобрав, в частности по таблицам данной книги, ведущие колеса с числами зубьев а и b, а ведомые - с и d, из формулы (6) определяем точно требуемую подачу

s" = T(pcd - zab)/zab (7)

Подставляем значение s" в формулу настройки подач

Относительная погрешность δ настройки подачи вызывает соответствующую относительную погрешность шага T винтовой линии. На основании этого нетрудно установить, что при настройке гитары подач можно допустить относительную погрешность

δ = Δβ/3440*tgβ (9)

Из сравнения этой формулы с формулой (3) видно, что допустимая в этом случае погрешность настройки гитары подач такая же, какой она является при обычной настройке цепи дифференциала. Следует еще раз подчеркнуть необходимость знания точного значения коэффициента k в формуле подач (8). Если есть сомнения, лучше проверить его расчетом по кинематической схеме станка. Если сам коэффициент k определен с относительной погрешностью δ, то это вызывает дополнительное отклонение винтовой линии на Δβ, определяемое при данном β из соотношения (9).

УСЛОВИЯ СЦЕПЛЯЕМОСТИ СМЕННЫХ КОЛЕС

В руководствах к станкам полезно давать графики, по которым легко заранее оценить возможность сцепляемости данной комбинации колес. На рис. 1 показаны два крайних положения гитары, определяемые круговыми пазами В. На рис. 2 приведен график, на котором дуги окружностей проведены из точек Oc и Od, являющихся центрами первого ведущего колеса а и последнего ведомого колеса d (рис. 3). Радиусы этих дуг в принятом масштабе равны расстояниям между центрами сцепляющихся между собой сменных колес с суммами чисел зубьев 40, 50, 60 и т. д. Эти суммы чисел зубьев для первой пары сцепляющихся колес а + с и второй пары b + d проставлены у концов соответствующих дуг.

Пусть по таблицам найден набор колес (50*47) : (53*70). Сцепятся ли они в порядке 50/70 * 47/53 ? Сумма чисел зубьев первой пары 50 + 70 = 120 Центр пальца должен лежать где-то на дуге с пометкой 120, проведенной из центра Oa. Сумма чисел зубьев колес второй пары 47 + 53 = 100. Центр пальца должен быть на дуге с пометкой 100, проведенной из центра Od. В итоге центр пальца установится в точке с на пересечении дуг. Согласно схеме сцепление колес возможно.

Для комбинации 30/40 * 20/50 сумма чисел зубьев первой пары 70, второй также 70. Дуги с такими пометками не пересекаются внутри фигуры, следовательно, сцепление колес невозможно.


Кроме графика, приведенного на рис. 2, желательно вычертить также контур коробки и другие детали, которые могут мешать установке зубчатых колес на гитару. Для наилучшего использования таблиц данной книги конструктору гитары целесообразно соблюдать следующие условия, которые не являются строго обязательными, но желательными:

1. Расстояние между постоянными ОСЯМИ Oa И Od должно быть таким, чтобы две пары колес с общей суммой зубьев 180 могли еще входить во взаимное зацепление. Наиболее желательное расстояние Oa - Od составляет от 75 до 90 модулей.

2. На первом ведущем валике должно устанавливаться колесо с числом зубьев хотя бы до 70, на последнем ведомом - до 100 (если по габаритам допустимо, можно предусмотреть до 120-127 для некоторых случаев уточненных настроек).

3. Длина прорези гитары при крайнем положении пальца должна обеспечивать сцепляемость колес, расположенных на пальце и на оси гитары с суммой зубьев не менее 170-180.

4. Крайний угол отклонения паза гитары от прямой, соединяющей центры Oa и Od, должен быть не менее 75-80°.

5. Коробка должна иметь достаточные габариты. Сцепляемость наиболее неблагоприятных комбинаций должна быть проверена по графику, прилагаемому в руководстве к станку (см. рис. 2).

Настройщик станка или механизма должен использовать данный в руководстве график (см. рис. 2), но, кроме того, учитывать, что чем больше зубчатое колесо на первом ведущем валу (при данном моменте сил), тем меньше усилие на зубьях первой пары; чем больше колесо на последнем ведомом валу, тем меньше усилие на зубьях второй пары.

Рассмотрим замедляющие передачи, т. е. случай, когда i

z1/z3 * z2/z4 ; z2/z3 * z1/z4 (10)

Предпочтительнее вторая комбинация. Она обеспечивает меньший момент сил на промежуточном валу и позволяет соблюсти предъявляемые дополнительные условия (см. рис. 3):

а+с > b+(20...25); b + d > с+(20...25) (11)

Эти условия ставятся для предотвращения упора сменных колес в соответствующие валы или детали крепления; числовое слагаемое зависит от конструкции данной гитары. Однако вторая из комбинаций (10) может быть принята только в том случае, когда колесо Z2 устанавливается на первом ведущем валу и если передача z2/z3 замедляющая или не содержит большого ускорения. Желательно, чтобы z2/z3

Например, комбинацию (33*59) : (65*71) лучше использовать в виде 59/65 * 33/71 Но в подобном же случае неприменимо соотношение 80/92 * 40/97 если колесо z = 80 не размещается на первом валу. Иногда для заполнения соответствующих интервалов передаточных отношений в таблицах даны неудобные комбинации колес, например 37/41 * 92/79 При таком порядке колес не соблюдается условие (11). Поменять местами ведущие колеса нельзя, так как колесо z = 92 не размещается на первом валу. Эти комбинации указаны для случаев, когда любыми средствами нужно получить более точное передаточное отношение. Можно также прибегнуть в этих случаях к способам уточненных настроек (стр. 401). Для ускорительных передач (i > 1) желательно так разбивать i = i1i2 чтобы сомножители были возможно более близкими один к другому и равномернее распределялось повышение скорости. При этом лучше, если i1 > i2

МИНИМАЛЬНЫЕ КОМПЛЕКТЫ СМЕННЫХ КОЛЕС

Состав комплектов сменных колес в зависимости от области применения приведен в табл. 2. В случае особо точных настроек - см. стр. 403.

Таблица 2


Для настройки делительных головок можно использовать таблицы, прилагаемые заводом. Сложнее, но можно выбирать подходящие пятковые комбинации из приводимых в данной книге «Основных таблиц для подбора зубчатых колес».

Для нарезания зубьев конических зубчатых колес-7-8-й степеней точности (ГОСТ 1.758-72) требуются специальные зуборезные станки, при отсутствии их конические зубчатые колеса с прямым и косым зубом можно нарезать на универсально-фрезерном станке при помощи делительной головки дисковыми модульными фрезами; конечно, точность. обработки при этом способе ниже (9-10-я степени).

Заготовку 1 конического зубчатого колеса устанавливают на оправке в шпиндель делительной головки 2 (рис. 9, а), который поворачивают в вертикальной плоскости до тех пор, пока образующая впадина между двумя зубьями не займет горизонтального положения. Нарезаются зубья обычно за три хода и только при малых модулях за два хода. При первом ходе фрезеруется впадина между зубьями шириной 2 (рис. 9, б); форма фрезы соответствует форме впадины на ее узком конце; второй проход производят модульной

Рис. 9. Зубофрезерование конического зубчатого колеса:

в -установка заготовки на оправке; б - схема фрезерования впадины между

вубьями; в - одновременно трех заготовок; г - одной заготовки двумя дисковыми

фрезами; д - трех заготовок специальной дисковой фрезой

фрезой, профиль которой соответствует наружному профилю зуба, поворачивая при этом стол с делительной головкой на угол :

где b 1 - ширина впадины между зубьями на ее широком конце в мм; - ширина впадины между зубьями на ее узком конце в мм; - длина впадины в мм.

При таком положении фрезеруются все левые бока зубьев (площадка 1 - рис. 9, б). За третий ход фрезеруются все правые бока зубьев (площадка 2), для чего делительную головку поворачивают на тот же угол, но в противоположном направлении.

Указанный способ нарезания зубьев малопроизводителен, а точность обработки соответствует примерно 10-й степени.

Для нарезания прямых зубьев точных конических зубчатых колес в серийном и массовом производстве применяют более производительные станки - зубострогальные, на которых обработка зубьев производится методом обкатки. При обработке зубьев с модулем свыше 2,5 их предварительно прорезают профильными дисковыми фрезами методом деления; таким образом, сложные зубострогальные станки не загружаются предварительной грубой обработкой, и, следовательно, они лучше используются для точной обработки.

На рис. 9, в показано предварительное фрезерование зубьев трех конических зубчатых колес одновременно на специальном или специализированном станке, применяемом в крупносерийном и массовом производстве. Станок снабжен устройством для автоматического деления и одновременного поворота всех обрабатываемых заготовок.

В крупносерийном и массовом производстве для предварительного нарезания зубьев небольших конических зубчатых колес меняют зуборезные станки для одновременного фрезерования трех заготовок с автоматическим делением, остановом, подводом и отводом. На рис. 9, д изображена схема расположения шпинделей 3-х шпиндельного высокопроизводительного станка для одновременного фрезерования зубьев на трех заготовках, расположенных вокруг специальной дисковой фрезы.


Станочник поочередно устанавливает заготовки на оправках рабочих головок, подводит головку до упора и включает самоход. Все остальные движения производятся автоматически: рабочая подача, отход нарезаемого колеса и поворот его на один зуб, следующий подвод, выключение, когда остальные две головки продолжают работать.

Окончательное чистовое нарезание зубьев примерно 8-й степениточности производится строганием на зубострогальных станках (Рис. 10).

. Станки эти работают методом обкатки: два строгальных резца (1 и 2) совершают прямолинейные возвратно-поступательные движения вдоль зубьев обрабатываемой заготовки; при обратномходе резцы немного отводятся от обрабатываемой поверхночти для уменьшения бесполезного изнашивания режущей кромки. Взаимное обкатывание заготовки и резцов обеспечивает получение профиля эвольвенты. Время нарезания зуба в зависимости отматериала, модуля, припуска на черновую обработку и других фактором колебтся от 3,5 до 30 сек..

Основная группа (рис. 3)

Для данной группы составляем следующие уравнения:

Z 4 + Z 5 = Z 6 + Z 7 ; (1)

Z 8 + Z 9 = Z 6 + Z 7 ; (2)

Для решения этой неопределенной системы уравнений и для получения наименьших размеров колес задаемся числом зубьев наименьшего колеса группы Z 4 = Z min = 18 22 .

Принимаем Z 4 =21.

Из уравнения (3) получаем: Z 5 = 2,52 · Z 4 = 2,52·21 = 52,9 53

Из уравнений (1) и (4) получаем:

21+53 = Z 6 +2· Z 6 и Z 6 = 74/3 = 24,67 25

Из уравнения (4) имеем: Z 7 =2· Z 6 =2·24,67 = 49,33 49

Однако определенные значения Z 6 и Z 7 вызовут большое отклонение в передаточном отношении i 3 (25/49= 0,51 вместо требуемого 0,50). Поэтому сумму зубьев этих колес примем равной Z 6 + Z 7 = 75 . Тогда

Z 6 = 75/3 = 25 и Z 7 = 2· Z 6 =2·25 = 50 .

Сумму зубьев колес Z 8 и Z 9 принимаем также равной 75. Из уравнений (2) и (5) получаем

Z 8 +1,58· Z 8 = 75 и Z 8 =75/2,58=29,1 29 .

Из уравнения (5) получаем Z 9 =1,58· Z 8 =1,58·29,1=45,9 46 .

Проверка: Z 4 + Z 5 = Z 6 + Z 7 = Z 8 + Z 9

21+53=74 25+50=29+46=75.

Передачу Z 4 - Z 5 корригируем с положительными коэффициентами коррекции, что особенно целесообразно для колеса Z 4 = 21.

Числа зубьев других переборных групп рассчитываем аналогично. Группы можно именовать в кинематическом порядке (основная, 1-ая переборная и т. д.) или в конструктивном порядке (1-ая, 2-ая, 3-я и т. д.).

Для получения достаточно точных требуемых передаточных отношений передач можно использовать подбор величины или корригирование передач.

Для получения точных общих передаточных отношений привода целесообразно так округлять полученные значения чисел зубьев колес, чтобы в одной группе передач фактические передаточные отношения были равны или больше требуемых, во второй группе – равны или меньше требуемых и т. д.

7. Определение фактических чисел оборотов шпинделя

Выбирая включенные передачи по графику чисел оборотов, получаем следующие фактические числа оборотов шпинделя:

8. Определение отклонения фактических чисел оборотов от стандартных

[ Δn ] = ± 10 (φ -1)% = 10(1,26-1)% = ± 2.6% .

Отклонения равны:

Все отклонения фактических чисел оборотов меньше допустимых отклонений.

В дальнейших расчетах будем принимать во внимание только стандартные заданные числа оборотов шпинделя.

9. Составление кинематической схемы привода

При составлении кинематической схемы необходимо учитывать следующее:

1) число валов должно соответствовать графику чисел оборотов;

2) расположение валов должно соответствовать конструкции станка, в частности конструктивной форме корпуса привода, валы могут располагаться горизонтально или вертикально в соответствии с расположением шпинделя в станке;

3) передвижные зубчатые колеса собирают в блоки различной конструкции. Блоки обычно состоят из двух или трех колес. Вместо блока из четырех колес применяют для уменьшения осевых габаритов группы два двойных блока. Меньшие осевые размеры имеют группы колес, подвижные блоки которых имеют узкое исполнение, то есть блоки, составленные из рядом расположенных колес;

4) расположение групп колес должно быть таким, чтобы общая длина валов и длина участков валов, передающих крутящий момент, в особенности тяжело нагруженных (у шпинделя) была возможно малой;

5) в металлорежущих станках обычно наиболее нагруженные передачи группы (с малым ведущим колесом) располагают у подшипника вала. Для обеспечения распределения передаваемой нагрузки по всей длине зубьев колес, валы долины быть достаточно жесткими, а зубчатые венцы иметь ширину не более, чем это требуется по расчету на прочность.

На рис. 4 приведен 1-й вариант кинематической схемы привода. Этот вариант характеризуется тем, что все блоки колес являются ведущими, их размеры и вес поэтому относительно небольшие. Группы колес не имеют общих связанных колес. Но конструкция валов III и IV при выполнении привода по этой схеме будет сложной, так как на этих валах будут располагаться подвижные блоки колес и неподвижно закрепленные колеса, что требует применения разных посадок. Блоки колес по этому варианту имею узкое исполнение, что уменьшает осевые габариты групп и величины перемещений блоков.

Рис. 4. Кинематическая схема (вариант 1)

На рис. 5 приведен 2-ой вариант кинематической схемы. Этот вариант характеризуется тем, что на валу III расположены только неподвижные колеса, а на валу IV расположены только подвижные блоки колес. Учитывая, что колеса 9 и 14 имеют одно и то же число зубьев и могут иметь один модуль, они объединены в одно связанное колесо. Таким образом число колес в приводе уменьшается на одно колесо. Конструкции валов III и IV проще конструкций этих же валов при использовании 1-го варианта схемы. Однако конструкция блока колес 4-6-8 стала более сложной, а блок колес 11-13-15 будет иметь больший вес, чем вес блошка колес 10-12-14 (см. 1-й вариант). Несмотря на применение связанного колеса осевые размеры групп передач, расположенных между валами III и IV, несколько увеличились. Из-за применения одного и того же модуля в группах могут возрасти и диаметральные размеры основной группы.

Рис. 5. Кинематическая схема (вариант 2)

Практически варианты конструктивно равноценны. Оба варианта используются в различных металлорежущих станках.

Для дальнейшего рассмотрения остановимся на 1-ом варианте, как более простом.

Для специалистов фрезерного дела не секрет как пользоваться делительной головкой, но многие люди даже не знают, что это такое. Она является горизонтальным станочным приспособлением, которое используется на координатно-расточных и фрезерных станках. Основной ее целью является периодический поворот заготовки, во время которого и происходит деление на равные части. Эта операция актуальна при нарезании зубьев, фрезеровки, вырезании канавок и так далее. С ее помощью можно изготавливать зубчатые. Данное изделие зачастую используется в инструментальных и механических цехах, где помогает существенно расширить рабочий диапазон станка. Закрепления заготовки происходит непосредственно в патроне, а если она оказывается слишком длинной, то в люнете с упором на заднюю бабку.

Виды выполняемых работ

Устройство УДГ позволяет обеспечивать:

  • Точную фрезеровку звездочек, даже если количество зубьев и отдельных секций будет составлять несколько десятков;
  • Также с ее помощью изготавливаются болты, гайки и другие детали с гранями;
  • Фрезеровка многогранников;
  • Проточка впадин, находящихся между зубьями колес;
  • Проточка канавок на режущих и сверлильных инструментах (для чего применяется непрерывное вращение, чтобы получить спиралевидную проточку);
  • Обработка торцов многогранных изделий.

Способы выполнения работ

Работа делительной головки может производиться несколькими способами, в зависимости от конкретной ситуации и того, какая операция производится с какой конкретной заготовкой. Здесь стоит выделить основные, которые чаще всего применяются:

  • Непосредственный. Данный способ осуществляется путем поворота делительного диска, который управляет передвижением заготовки. Промежуточный механизм при этом не участвует. Этот метод актуален при использовании таких типов делительных инструментов, как оптический и упрощенный. Универсальные делительные головки применяются только с лобовым диском.
  • Простой. При данном способе отсчет ведется от неподвижного делительного диска. Деление создается при помощи управляющей рукоятки, которая через червячную передачу связывается со шпинделем на устройстве. При этом способе применяются те универсальные головки, на которых установлен делительный боковой диск.
  • Комбинированный. Сущность данного способа проявляется в том, что поворот самой головки является своеобразной суммой поворота ее рукоятки, которая вращается относительно делительного диска, расположенного неподвижно, и диска, который поворачивается с рукояткой. Этот диск передвигается относительно штифта, что находится на заднем фиксаторе делительной головки.
  • Дифференциальный. При данном способе поворот шпинделя проявляется как сумма двух поворотов. Первый относится к рукоятке, вращающейся относительно делительного диска. Второй – поворот уже самого диска, что проводится принудительно от шпинделя через всю систему зубчатых колес. Для данного способа используют универсальные делительные головки, которые имеют комплект сменных зубчатых колес.
  • Непрерывный. Данный способ актуален во время фрезерования спиральных и винтовых канавок. Он производится на оптических головках, у которых идет кинематическая связь шпинделя и винта подачи на фрезерный станок, и универсальных.

Нужен пластинчатый теплообменник ? Обращайтесь в компанию Молтехснаб. Только оригинальное оборудование для пищевой промышленности.

Устройство и принцип работы делительной головки

Чтобы разобраться, как работает делительная головка, нужно знать, из чего она состоит. В основу ее входит корпус №4, который закрепляется на столе станка. Также у нее имеется шпиндель №11, который ставится на подшипниках №13, №10 и головке №3. Червяк №12 приводит в движение червячное колесо №8. Он связан с маховиком №1. Рукоятка №2 служит для закрепления шпинделя, а следовательно и червячного колеса. Она связана с прижимной шайбой №9. Червячное колесо и червяк могут выполнять только поворот шпинделя, а погрешность их работы ни как не влияет на общую точность.

В эксцентрической втулке посажен один из концов валика, что позволяет опускать вниз их вместе. Если расцепить колесо шпинделя и червяка, то можно произвести поворот головки шпинделя. Внутри корпуса располагается стеклянный диск №7, который жестко закрепляется на шпинделе №11. Диск расчерчен шкалой на 360 градусов. Окуляр №5 располагается сверху головки. Чтобы повернуть шпиндель на нужно количество градусов и минут, используется маховик.

Порядок выполнения работ

Когда операция выполняется непосредственным способом, то сначала отключается из зацепа червячная передача, для чего достаточно только повернуть рукоять управления до соответствующего упора. После этого следует освободить фиксатор, останавливающий лимб. Поворот шпинделя осуществляется от патрона или от детали, которая подвергается обработке, что позволяет поставить устройство под нужным углом. Угол поворота определяется при помощи нониуса, что расположен на лимбе. Завершается операция закреплением шпинделя при помощи зажима.

Когда операция выполняется простым способом, то здесь сначала нужно зафиксировать делительный диск в одном положении. Основные операции производятся при помощи рукоятки фиксатора. Поворот рассчитывается согласно отверстиям, сделанным на делительном диске. Для фиксации конструкции имеется специальный стержень.

Когда операция выполняется дифференциальным способом, то первым делом нужно проверить плавность поворота шестерней, что установлены на самой головке. После этого следует произвести отключение стопора диска. Порядок настраивания здесь полностью совпадает с порядком настраивания при простом способе. Основные рабочие операции выполняются только при горизонтальном положении шпинделя.

Таблица делений для делительной головки

Количество частей деления Количество оборотов ручки Количество отсчитываемых отверстий Общее количество отверстий
2 20
3 13 11 33
4 13 9 39
5 13 13 39
6 19
7 8
8 6 22 33
9 6 20 30
10 6 26 39
11 5 35 49
12 5 15 21
13 5
14 4 24 54
15 4
16 3 10 30
17 3 3 39
18 2 42 49
19 2 18 21
20 2 22 33
21 2 20 30
22 2 28 39

Расчет делительной головки

Деление на УДГ осуществляется не только по таблицам, но и по специальному расчету, который можно сделать самостоятельно. Это сделать не так уж и сложно, так как при расчете используется всего несколько данных. Здесь требуется умножить диаметр заготовки на особый коэффициент. Он рассчитывается путем деления 360 градусов на количество частей деления. Потом из этого угла нужно взять синус, который и будет коэффициентом, что требуется умножить на диаметр для получения расчета.

УДГ.Нарезание зубьев шестерни:Видео