Определение движения тела по окружности. Движение тела по окружности с постоянной по модулю скоростью

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ, ХАРАКТЕРИЗУЮЩИЕ ДВИЖЕНИЕ ТЕЛА ПО ОКРУЖНОСТИ.

1.ПЕРИОД (Т)-промежуток времени, за который тело совершает один полный оборот.

, где t-время, в течение которого совершено N оборотов.

2. ЧАСТОТА ()- число оборотов N, совершаемых телом за единицу времени.

(герц)

3. СВЯЗЬ ПЕРИОДА И ЧАСТОТЫ:

4. ПЕРЕМЕЩЕНИЕ () направлено по хордам.

5.УГЛОВОЕ ПЕРЕМЕЩЕНИЕ (угол поворота ).

РАВНОМЕРНОЕ ДВИЖЕНИЕ ПО ОКРУЖНОСТИ - это такое движение при котором модуль скорости не изменяется.

6. ЛИНЕЙНАЯ СКОРОСТЬ ( направлена по касательной к окружности.

7. УГЛОВАЯ СКОРОСТЬ

8. СВЯЗЬ ЛИНЕЙНОЙ И УГЛОВОЙ СКОРОСТИ

Угловая скорость не зависит от радиуса окружности, по которой движется тело. Если в задаче рассматривается движение точек, расположенных на одном диске, но на разном расстоянии от его центра, то надо иметь в виду, что УГЛОВАЯ СКОРОСТЬ ЭТИХ ТОЧЕК ОДИНАКОВА.

9. ЦЕНТРОСТРЕМИТЕЛЬНОЕ (нормальное) УСКОРЕНИЕ ().

Т. к. при движении по окружности постоянно изменяется направление вектора скорости, то движение по окружности происходит с ускорением. Если тело движется по окружности равномерно, то оно обладает только центростремительным (нормальным) ускорением, которое направлено по радиусу к центру окружности. Ускорение называется нормальным, так как в данной точке вектор ускорения расположен перпендикулярно (нормально) к вектору линейной скорости. .

Если тело движется по окружности с изменяющейся по модулю скоростью, то наряду с нормальным ускорением, характеризующим изменение скорости по направлению, появляется ТАНГЕНЦИАЛЬНОЕ УСКОРЕНИЕ, характеризующее изменение скорости по модулю (). Направлено тангенциальное ускорение по касательной к окружности. Полное ускорение тела при неравномерном движении по окружности определится по теореме Пифагора:

ОТНОСИТЕЛЬНОСТЬ МЕХАНИЧЕСКОГО ДВИЖЕНИЯ

При рассмотрении движения тела относительно разных систем отсчета траектория, путь, скорость, перемещение оказываются различными. Например, человек сидит в движущемся автобусе. Его траектория относительно автобуса - точка, а относительно Солнца - дуга окружности, путь, скорость, перемещение относительно автобуса равны нулю, а относительно Земли отличны от нуля. Если рассматривается движение тела относительно подвижной и неподвижной систем отсчета, то согласно классического закона сложения скоростей скорость тела относительно неподвижной системы отсчета равна векторной сумме скорости тела относительно подвижной системы отсчета и скорости подвижной системы отсчета относительно неподвижной :

Аналогично

ЧАСТНЫЕ СЛУЧАИ ИСПОЛЬЗОВАНИЯ ЗАКОНА СЛОЖЕНИЯ СКОРОСТЕЙ

1) Движение тел относительно Земли

б) тела движутся навстречу друг другу

2) Движение тел относительно друг друга

а) тела движутся в одном направлении

б) тела движутся в разных направлениях (навстречу друг другу)

3) Скорость тела относительно берега при движении

а) по течению

б) против течения , где - скорость тела относительно воды, - скорость течения.

4) Скорости тел направлены под углом друг к другу.

Например: а) тело переплывает реку, двигаясь перпендикулярно течению

б) тело переплывает реку, двигаясь перпендикулярно берегу

в) тело одновременно участвует в поступательном и вращательном движении, например, колесо движущегося автомобиля. Каждая точка тела имеет скорость поступательного движения, направленную в сторону движения тела и - скорость вращательного движения, направленную по касательной к окружности. Причем, Чтобы найти скорость любой точки относительно Земли необходимо векторно сложить скорость поступательного и вращательного движения:


ДИНАМИКА

ЗАКОНЫ НЬЮТОНА

ПЕРВЫЙ ЗАКОН НЬЮТОНА (ЗАКОН ИНЕРЦИИ)

Существуют такие системы отсчета, относительно которых тело находится в покое или движется прямолинейно и равномерно, если на него не действуют другие тела или действия тел компенсируются (уравновешиваются).

Явление сохранения скорости тала при отсутствии действия на него других тел или при компенсации действия других тел называется инерцией.

Системы отсчета, в которых выполняются законы Ньютона, называются инерциальными системами отсчета (ИСО). К ИСО относятся системы отсчета связанные с Землей или не имеющие ускорения относительно Земли. Системы отсчета, движущиеся с ускорением относительно Земли, являются неинерциальными, в них законы Ньютона не выполняются. Согласно классическому принципу относительности Галилея все ИСО равноправны, законы механики имеют одинаковую форму во всех ИСО, все механические процессы протекают одинаково во всех ИСО (никакими механическими опытами, проведенными внутри ИСО, нельзя определить находится она в покое или движется прямолинейно и равномерно).

ВТОРОЙ ЗАКОН НЬЮТОНА

Скорость тела изменяется при действии на тело силы. Любое тело обладает свойством инертности. Инертность – это свойство тел, состоящее в том, что для изменения скорости тела требуется время, скорость тела мгновенно измениться не может. То тело, которое больше изменяет свою скорость при действии одинаковой силы, является менее инертным. Мерой инертности служит масса тела.

Ускорение тела прямо пропорционально действующей на него силе и обратно пропорционально массе тела.

Сила и ускорение всегда сонаправлены. Если на тело действуют несколько сил , то ускорение телу сообщает равнодействующая этих сил (), которая равна векторной сумме всех сил, действующих на тело:

Если тело совершает равноускоренное движение, то на него действует постоянная сила.

ТРЕТИЙ ЗАКОН НЬЮТОНА

Силы возникают при взаимодействии тел.

Тела действуют друг на друга с силами, направленными вдоль одной прямой, равными по модулю и противоположными по направлению.

Особенности сил, возникающих при взаимодействии:

1. Силы всегда возникают парами.

2 Силы, возникающие при взаимодействии, имеют одну природу.

3.Силы, не имеют равнодействующей, т. к. приложены к разным телам.

СИЛЫ В МЕХАНИКЕ

СИЛА ВСЕМИРНОГО ТЯГОТЕНИЯ-сила, с которой притягиваются все тела во Вселенной.

ЗАКОН ВСЕМИРНОГО ТЯГОТЕНИЯ: тела притягиваются друг к другу с силами прямо пропорциональными произведению их масс и обратно пропорциональными квадрату расстояния между ними.

(формулой можно пользоваться для расчета притяжения точечных тел и шаров), где G-гравитационная постоянная (постоянная всемирного тяготения), G=6,67·10 -11 , -массы тел, R-расстояние между телами, измеряется между центрами тел.

СИЛА ТЯЖЕСТИ – сила притяжения тел к планете. Сила тяжести вычисляется по формулам:

1) , где - масса планеты, - масса тела, - расстояние между центром планеты и телом.

2) , где - ускорение свободного падения,

Сила тяжести всегда направлена к центру тяжести планеты.

Радиус орбиты искусственного спутника, - радиус планеты, - высота спутника над поверхностью планеты,

Тело становится искусственным спутником, если ему в горизонтальном направлении сообщить необходимую скорость. Скорость, необходимая для того, чтобы тело двигалось по круговой орбите вокруг планеты, называется первой космической скоростью . Чтобы получить формулу для вычисления первой космической скорости, необходимо помнить, что все космические тела, в том числе и искусственные спутники, движутся под действием силы всемирного тяготения , кроме того, скорость – величина кинематическая, «мостиком» в кинематику может служить формула, следующая из второго закона Ньютона Приравнивая правые части формул, получаем: или Учитывая, что тело движется по окружности и поэтому обладает центростремительным ускорением , получаем: или . Отсюда - формула для вычисления первой космической скорости . Учитывая, что формулу для расчета первой космической скорости можно записать в виде: .Аналогично, используя второй закон Ньютона и формулы криволинейного движения, можно определить, например, период обращения тела по орбите.

СИЛА УПРУГОСТИ – сила, действующая со стороны деформированного тела и направленная в сторону, противоположную смещению частиц при деформации. Силу упругости можно вычислить с помощью закона Гука: сила упругости прямо пропорциональна удлинению: где - удлинение,

Жесткость, . Жесткость зависит от материала тела, его формы и размеров.

СОЕДИНЕНИЕ ПРУЖИН

Закон Гука выполняется только при упругих деформациях тел. Упругими называются деформации, при которых после прекращения действия силы тело приобретает прежние форму и размеры.

Движение по окружности - простейший случай криволинейного движения тела. Когда тело движется вокруг некоторой точки, наряду с вектором перемещения удобно ввести угловое перемещение ∆ φ (угол поворота относительно центра окружности), измеряемое в радианах.

Зная угловое перемещение, можно вычислить длину дуги окружности (путь), которую прошло тело.

∆ l = R ∆ φ

Если угол поворота мал, то ∆ l ≈ ∆ s .

Проиллюстрируем сказанное:

Угловая скорость

При криволинейном движении вводится понятие угловой скорости ω , то есть скорости изменения угла поворота.

Определение. Угловая скорость

Угловая скорость в данной точке траектории - предел отношения углового перемещения ∆ φ к промежутку времени ∆ t , за которое оно произошло. ∆ t → 0 .

ω = ∆ φ ∆ t , ∆ t → 0 .

Единица измерения угловой скорости - радиан в секунду (р а д с).

Существует связь между угловой и линейной скоростями тела при движении по окружности. Формула для нахождения угловой скорости:

При равномерном движении по окружности, скорости v и ω остаются неизменными. Меняется только направление вектора линейной скорости.

При этом равномерное движение по окружности на тело действует центростремительное, или нормальное ускорение, направленное по радиусу окружности к ее центру.

a n = ∆ v → ∆ t , ∆ t → 0

Модуль центростремительного ускорения можно вычислить по формуле:

a n = v 2 R = ω 2 R

Докажем эти соотношения.

Рассмотрим, как изменяется вектор v → за малый промежуток времени ∆ t . ∆ v → = v B → - v A → .

В точках А и В вектор скорости направлен по касательной к окружности, при этом модули скоростей в обеих точках одинаковы.

По определению ускорения:

a → = ∆ v → ∆ t , ∆ t → 0

Взглянем на рисунок:

Треугольники OAB и BCD подобны. Из этого следует, что O A A B = B C C D .

Если значение угла ∆ φ мало, расстояние A B = ∆ s ≈ v · ∆ t . Принимая во внимание, что O A = R и C D = ∆ v для рассмотренных выше подобных треугольников получим:

R v ∆ t = v ∆ v или ∆ v ∆ t = v 2 R

При ∆ φ → 0 , направление вектора ∆ v → = v B → - v A → приближается к направлению на центр окружности. Принимая, что ∆ t → 0 , получаем:

a → = a n → = ∆ v → ∆ t ; ∆ t → 0 ; a n → = v 2 R .

При равномерном движении по окружности модуль ускорения остается постоянным, а направление вектора изменяется со временем, сохраняя ориентацию на центр окружности. Именно поэтому это ускорение называется центростремительным: вектор в любой момент времени направлен к центру окружности.

Запись центростремительного ускорения в векторной форме выглядит следующим образом:

a n → = - ω 2 R → .

Здесь R → - радиус вектор точки на окружности с началом в ее центре.

В общем случае ускорение при движении по окружности состоит из двух компонент - нормальное, и тангенциальное.

Рассмотрим случай, когда тело движется по окружности неравномерно. Введем понятие тангенциального (касательного) ускорения. Его направление совпадает с направлением линейной скорости тела и в каждой точке окружности направлено по касательной к ней.

a τ = ∆ v τ ∆ t ; ∆ t → 0

Здесь ∆ v τ = v 2 - v 1 - изменение модуля скорости за промежуток ∆ t

Направление полного ускорения определяется векторной суммой нормального и тангенциального ускорений.

Движение по окружности в плоскости можно описывать при помощи двух координат: x и y. В каждый момент времени скорость тела можно разложить на составляющие v x и v y .

Если движение равномерное, величины v x и v y а также соответствующие координаты будут изменяться во времени по гармоническому закону с периодом T = 2 π R v = 2 π ω

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

На этом уроке мы рассмотрим криволинейное движение, а именно равномерное движение тела по окружности. Мы узнаем, что такое линейная скорость, центростремительное ускорение при движении тела по окружности. Также введем величины, которые характеризуют вращательное движение (период вращения, частота вращения, угловая скорость), и свяжем эти величины между собой.

Под равномерным движением по окружности понимают, что тело за любой одинаковый промежуток времени поворачивается на одинаковый угол (см. Рис. 6).

Рис. 6. Равномерное движение по окружности

То есть модуль мгновенной скорости не меняется:

Такую скорость называют линейной .

Хотя модуль скорости не меняется, направление скорости изменяется непрерывно. Рассмотрим векторы скорости в точках A и B (см. Рис. 7). Они направлены в разные стороны, поэтому не равны. Если вычесть из скорости в точке B скорость в точке A , получаем вектор .

Рис. 7. Векторы скорости

Отношение изменения скорости () ко времени, за которое это изменение произошло (), является ускорением.

Следовательно, любое криволинейное движение является ускоренным .

Если рассмотреть треугольник скоростей, полученный на рисунке 7, то при очень близком расположении точек A и B друг к другу угол (α) между векторами скорости будет близок к нулю:

Также известно, что этот треугольник равнобедренный, поэтому модули скоростей равны (равномерное движение):

Следовательно, оба угла при основании этого треугольника неограниченно близки к :

Это означает, что ускорение, которое направлено вдоль вектора , фактически перпендикулярно касательной. Известно, что линия в окружности, перпендикулярная касательной, является радиусом, поэтому ускорение направлено вдоль радиуса к центру окружности. Называется такое ускорение центростремительным.

На рисунке 8 изображены рассмотренный ранее треугольник скоростей и равнобедренный треугольник (две стороны являются радиусами окружности). Эти треугольники являются подобными, так как у них равны углы, образованные взаимно перпендикулярными прямыми (радиус, как и вектор перпендикулярны к касательной).

Рис. 8. Иллюстрация к выводу формулы центростремительного ускорения

Отрезок AB является перемещением (). Мы рассматриваем равномерное движение по окружности, поэтому:

Подставим полученное выражение для AB в формулу подобия треугольников:

Понятий «линейная скорость», «ускорение», «координата» не достаточно для того, чтобы описать движение по кривой траектории. Поэтому необходимо ввести величины, характеризующие вращательное движение.

1. Периодом вращения (T ) называется время одного полного оборота. Измеряется в системе СИ в секундах.

Примеры периодов: Земля вращается вокруг своей оси за 24 часа (), а вокруг Солнца - за 1 год ().

Формула для вычисления периода:

где - полное время вращения; - число оборотов.

2. Частота вращения (n ) - число оборотов, которое тело совершает в единицу времени. Измеряется в системе СИ в обратных секундах.

Формула для нахождения частоты:

где - полное время вращения; - число оборотов

Частота и период - обратно пропорциональные величины:

3. Угловой скоростью () называют отношение изменения угла, на который повернулось тело, ко времени, за которое этот поворот произошел. Измеряется в системе СИ в радианах, деленных на секунды.

Формула для нахождения угловой скорости:

где - изменение угла; - время, за которое произошел поворот на угол .

Равномерное движение по окружности – это простейший пример . Например, по окружности движется конец стрелки часов по циферблату. Скорость движения тела по окружности носит название линейная скорость .

При равномерном движении тела по окружности модуль скорости тела с течением времени не изменяется, то есть v = const, а изменяется только направление вектора скорости в этом случае отсутствует (a r = 0), а изменение вектора скорости по направлению характеризуется величиной, которая называется центростремительное ускорение () a n или а ЦС. В каждой точке вектор центростремительного ускорения направлен к центру окружности по радиусу.

Модуль центростремительного ускорения равен

a ЦС =v 2 / R

Где v – линейная скорость, R – радиус окружности

Рис. 1.22. Движение тела по окружности.

Когда описывается движение тела по окружности, используется угол поворота радиуса – угол φ, на который за время t поворачивается радиус, проведённый из центра окружности до точки, в которой в этот момент находится движущееся тело. Угол поворота измеряется в радианах. равен углу между двумя радиусами окружности, длина дуги между которыми равна радиусу окружности (рис. 1.23). То есть если l = R, то

1 радиан= l / R

Так как длина окружности равна

l = 2πR

360 о = 2πR / R = 2π рад.

Следовательно

1 рад. = 57,2958 о = 57 о 18’

Угловая скорость равномерного движения тела по окружности – это величина ω, равная отношению угла поворота радиуса φ к промежутку времени, в течение которого совершён этот поворот:

ω = φ / t

Единица измерения угловой скорости – радиан в секунду [рад/с]. Модуль линейной скорости определяется отношением длины пройденного пути l к промежутку времени t:

v= l / t

Линейная скорость при равномерном движении по окружности направлена по касательной в данной точке окружности. При движении точки длина l дуги окружности, пройденной точкой, связана с углом поворота φ выражением

l = Rφ

где R – радиус окружности.

Тогда в случае равномерного движения точки линейная и угловая скорости связаны соотношением:

v = l / t = Rφ / t = Rω или v = Rω

Рис. 1.23. Радиан.

Период обращения – это промежуток времени Т, в течение которого тело (точка) совершает один оборот по окружности.Частота обращения – это величина, обратная периоду обращения – число оборотов в единицу времени (в секунду). Частота обращения обозначается буквой n.

n = 1 / T

За один период угол поворота φ точки равен 2π рад, поэтому 2π = ωT, откуда

T = 2π / ω

То есть угловая скорость равна

ω = 2π / T = 2πn

Центростремительное ускорение можно выразить через период Т и частоту обращения n:

a ЦС = (4π 2 R) / T 2 = 4π 2 Rn 2

Так как линейная скорость равномерно меняет направление, то движение по окружности нельзя назватьравномерным , оно являетсяравноускоренным .

Угловая скорость

Выберем на окружности точку1 . Построим радиус. За единицу времени точка переместится в пункт2 . При этом радиус описывает угол. Угловая скорость численно равна углу поворота радиуса за единицу времени.

Период и частота

Период вращенияT - это время, за которое тело совершает один оборот.

Частота вращение - это количество оборотов за одну секунду.

Частота и период взаимосвязаны соотношением

Связь с угловой скоростью

Линейная скорость

Каждая точка на окружности движется с некоторой скоростью. Эту скорость называют линейной.Направление вектора линейной скорости всегда совпадает с касательной к окружности. Например, искры из-под точильного станка двигаются, повторяя направление мгновенной скорости.


Рассмотрим точку на окружности, которая совершает один оборот, время, которое затрачено - это есть периодT .Путь , который преодолевает точка - это есть длина окружности.

Центростремительное ускорение

При движении по окружности вектор ускорения всегда перпендикулярен вектору скорости, направлен в центр окружности.

Используя предыдущие формулы, можно вывести следующие соотношения


Точки, лежащие на одной прямой исходящей из центра окружности (например, это могут быть точки, которые лежат на спице колеса), будут иметь одинаковые угловые скорости, период и частоту. То есть они будут вращаться одинаково, но с разными линейными скоростями. Чем дальше точка от центра, тем быстрей она будет двигаться.

Закон сложения скоростей справедлив и для вращательного движения. Если движение тела или системы отсчета не является равномерным, то закон применяется для мгновенных скоростей. Например, скорость человека, идущего по краю вращающейся карусели, равна векторной сумме линейной скорости вращения края карусели и скорости движения человека.

Земля участвует в двух основных вращательных движениях: суточном (вокруг своей оси) и орбитальном (вокруг Солнца). Период вращения Земли вокруг Солнца составляет 1 год или 365 суток. Вокруг своей оси Земля вращается с запада на восток, период этого вращения составляет 1 сутки или 24 часа. Широтой называется угол между плоскостью экватора и направлением из центра Земли на точку ее поверхности.

Согласно второму закону Ньютона причиной любого ускорения является сила. Если движущееся тело испытывает центростремительное ускорение, то природа сил, действием которых вызвано это ускорение, может быть различной. Например, если тело движется по окружности на привязанной к нему веревке, то действующей силой является сила упругости.

Если тело, лежащее на диске, вращается вместе с диском вокруг его оси, то такой силой является сила трения. Если сила прекратит свое действие, то далее тело будет двигаться по прямой

Рассмотрим перемещение точки на окружности из А в В. Линейная скорость равна

Теперь перейдем в неподвижную систему, связанную с землей. Полное ускорение точки А останется прежним и по модулю, и по направлению, так как при переходе от одной инерциальной системы отсчета к другой ускорение не меняется. С точки зрения неподвижного наблюдателя траектория точки А - уже не окружность, а более сложная кривая (циклоида), вдоль которой точка движется неравномерно.