Что называют деформацией тела физика. Виды деформации

Деформация

Изучая механику твердого тела, мы использовали понятие абсолютно твердого тела. Но в природе не существует абсолютно твердых тел, т.к. все реальные тела под действием сил изменяют свою форму и размеры, т. е. деформируются . Деформация называется упругой , если после того, как на тело перестали действовать внешние силы тело восстанавливает первоначальные размеры и форму. Деформации, сохраняющиеся в теле после прекращения действия внешних сил, называютсяпластическими (или остаточными ). На практике деформации тела всегда пластические, поскольку они после прекращения действия внешних сил никогда полностью не исчезают. Но если остаточные деформации малы, то ими можно пренебречь и считать данные деформации упругими деформации, что мы далее и будем делать. В теории упругости доказывается, что все виды деформаций (растяжение или сжатие, изгиб, сдвиг, кручение) могут быть сведены к композиции (одновременному действию) деформаций растяжения или сжатия и сдвига. Рассмотрим однородный стержень длиной l и площадью поперечного сечения S (рис. 1), к концам которого приложены направленные вдоль его оси силы F 1 и F 2 (F 1 =F 2 =F), из-за чего длина стержня изменяется на величину Δl .

Рис.1

Естественно, что при растяжении Δl положительно, а при сжатии отрицательно. Сила, действующая на единицу площади поперечного сечения, называется напряжением : (1) Если сила направлена по нормали к поверхности, напряжение называется нормальным , если же по касательной к поверхности -тангенциальным . Количественной мерой, которая характеризует степень деформации, испытываемой телом, есть его относительная деформация . Так, относительное изменение длины стержня (продольная деформация) (2) относительное поперечное растяжение (сжатие) где d - диаметр стержня. Деформации ε и ε" всегда имеют разные знаки (при растяжении Δl положительно, a Δd отрицательно, при сжатии Δl отрицательно, a Δd положительно). Из опыта известна взаимосвязь ε и ε": где μ - положительный коэффициент, зависящий от свойств материала и называемый коэффициентом Пуассона . Английский физик Р. Гук (1635-1703) экспериментально установил, что для малых деформаций относительное удлинение ε и напряжение σ прямо пропорциональны друг другу: (3) где коэффициент пропорциональности Е называется модулем Юнга . Из формулы (3) замечаем, что модуль Юнга определяется напряжением, действие которого делает относительное удлинение, равное единице. Из формул (2), (3) и (1) следует, что или (4) где k - коэффициент упругости . Выражение (4) также выражает закон Гука для одномерного случая, согласно которому удлинение стержня при упругой деформации пропорционально действующей на стержень силе . Деформации твердых тел подчиняются закону Гука до известного предела, определяемого опытным путем. Связь между деформацией и напряжением представляется в виде диаграммы напряжений, которую мы рассмотрим для конкретного примера - металлического образца (рис. 3).

Рис.2

Из рисунка заметно, что линейная зависимость σ(ε), установленная Гуком, выполняется лишь в очень узких пределах до так называемого предела пропорциональности (σ П). При дальнейшем увеличении напряжения деформация еще упругая (хотя зависимость σ(ε) уже становится нелинейной) и до предела упругости (σ y) остаточные деформации не возникают. За пределом упругости в теле наблюдаются остаточные деформации и график, описывающий возвращение тела в первоначальное состояние после прекращения действия силы, изобразится не кривой ВО, а параллельной ей - CF. ] Напряжение, при котором появляется заметная остаточная деформация (≈0,2%), называется пределом текучести (σ T) - точка С на кривой. В области CD деформация возрастает без увеличения напряжения, т. е. тело как бы <течет>. Эта область называется областью текучести (или областью пластических деформаций). Материалы, для которых область текучести значительна в сравнении с другими областями деформаций, называются вязкими , для которых же область практически отсутствует - хрупкими . При дальнейшем растяжении (за точку D) происходит разрушение тела. Максимальное напряжение, возникающее в теле до разрушения, называется пределом прочности (σ р). Диаграмма зависимости напряжений от деформаций для реальных твердых тел зависит от различных факторов. Одно и то же твердое тело может при кратковременном действии сил проявлять себя как хрупкое, а при достаточно продолжительных, но малых силах быть текучим. Вычислим потенциальную энергию упругорастянутого (сжатого) стержня, которая равна работе, совершаемой внешними силами при деформации: где х - абсолютное удлинение стержня, изменяющееся в процессе деформации от 0 до Δl . Согласно закону Гука (21.4), F=kx=ESx/l. Поэтому т. е. потенциальная энергия упругорастянутого стержня пропорциональна квадрату деформации (Δl) 2 . Деформацию сдвига проще всего осуществить, беря брусок, имеющий форму прямоугольного параллелепипеда, и прилагая к нему силу F τ , (рис. 3), касательную к его поверхности (нижняя часть бруска закреплена). Относительная деформация сдвига находится из формулы где Δs - абсолютный сдвиг параллельных слоев тела относительно друг друга; h - расстояние между слоями (для малых углов tgα≈α).

При действии на тело внешних сил появляются деформации, размер и форма тела изменяются. В теле, которое подвергается деформации, возникают силы упругости, которые уравновешивают внешние силы.

Виды деформации. Упругие и неупругие деформации

Деформации можно разделить на упругие и неупругие. Упругой называют деформацию, которая исчезает при прекращении действия деформирующего воздействия. Деформация перестает быть упругой, если внешняя сила становится больше определенной величины, которая носит название предела упругости. При таком виде деформации происходит возврат частиц из новых положений равновесия в кристаллической решетке в старые. Тело полностью восстанавливает свои размеры и форму после снятия нагрузки.

Неупругие деформации твердого тела называют пластическими. При пластической деформации происходит необратимая перестройка кристаллической решетки.

Закон Гука

Английский ученый Р. Гук установил, что при упругих деформациях удлинение деформированной пружины (x) прямо пропорционально приложенной к ней внешней силе (F). Этот закон можно записать как:

где - проекция силы на ось X; x- удлинение пружины по оси X; k - коэффициент упругости пружины (жесткость пружины). Если использовать понятие силы упругости () для деформированной пружины, то закон Гука записывают как:

где - проекция силы упругости на ось X. Жесткость пружины - это величина, зависящая от материала, размеров витка пружины и ее длины.

При деформировании однородных стержней растяжением или односторонним сжатием, они ведут себя как пружины. Это означает, что для них при небольших деформациях выполняется закон Гука. Упругие силы в стержне обычно описывают при помощи напряжения . Напряжение - это физическая величина равная модулю силы упругости на единицу площади сечения стержня. При этом считают, что сила распределяется равномерно по сечению и она перпендикулярна поверхности сечения.

Title="Rendered by QuickLaTeX.com" height="12" width="45" style="vertical-align: 0px;">, если происходит растяжение и при сжатии. Напряжение называют еще нормальным. Выделяют тангенциальное напряжение , которое равно:

где — сила упругости, которая действует вдоль слоя тела; S - площадь рассматриваемого слоя.

Изменение длины стержня () равно:

где E - модуль Юнга; l - длина стержня. Модуль Юнга характеризует упругие свойства материала.

Растяжение (сжатие), сдвиг, кручение

Одностороннее растяжение заключается в увеличении длины тела, при воздействии силы растяжения. Мерой такого вида деформации служит величина относительного удлинения, например для стержня ().

Деформация всестороннего растяжения (сжатия) проявляется в изменении (увеличении или уменьшении) объема тела. При этом форма тела не изменяется. Растягивающие (сжимающие) силы равномерно распределяются по всей поверхности тела. Характеристикой, такого вида деформации, является относительное изменение объема тела ().

И так, мы немного рассмотрели деформацию растяжения (сжатия), кроме этого выделяют сдвиг, кручение.

Сдвиг - это вид деформации, при которой плоские слои твердого тела смещены параллельно друг другу. При этом виде деформации слои не изменяют свою форму и размер. Мерой данной деформации служит угол сдвига () или величина сдвига () (смещение одного из оснований тела). Закон Гука для упругой деформации сдвига записывают как:

где G - модуль поперечной упругости (модуль сдвига), h — толщина деформируемого слоя; - угол сдвига.

Деформация кручения состоит в относительном повороте параллельных друг другу сечений, перпендикулярных оси образца. Момент сил (M), который закручивает однородный круглый стержень на угол , равен:

где C - постоянная кручения.

В теории упругости доказано, что все виды упругой деформации могут сводиться к деформациям растяжения или сжатия, которые происходят в один момент времени.

Примеры решения задач

ПРИМЕР 1

Задание Каково напряжение, которое возникает в стальной нити круглого сечения, если к одному из ее концов подвесили груз массой кг. Диаметр подвеса равен м.

Решение Сила тяжести (), приложенная к грузу вызывает возникновение силы упругости (), которая приложена к подвесу. По модулю эти силы равны:

Площадь поперечного сечения подвеса равна площади круга:

По определению натяжение равно:

Из контекста задачи ясно, что сила упругости перпендикулярная поверхности сечения нити, используя формулы (1.1), (1.2) и (1.3), получим:

Вычислим искомую величину напряжения:

Деформации разделяют на обратимые (упругие) и необратимые (неупругие, пластические, ползучести). Упругие деформации исчезают после окончания действия приложенных сил, а необратимые - остаются. В основе упругих деформаций лежат обратимые смещения атомов тела от положения равновесия (другими словами, атомы не выходят за пределы межатомных связей); в основе необратимых - необратимые перемещения атомов на значительные расстояния от исходных положений равновесия (то есть выход за рамки межатомных связей, после снятия нагрузки переориентация в новое равновесное положение).

Пластические деформации - это необратимые деформации, вызванные изменением напряжений. Деформации ползучести - это необратимые деформации, происходящие с течением времени. Способность веществ пластически деформироваться называется пластичностью . При пластической деформации металла одновременно с изменением формы меняется ряд свойств - в частности, при холодном деформировании повышается прочность .

Энциклопедичный YouTube

    1 / 3

    ✪ Урок 208. Деформация твердых тел. Классификация видов деформации

    ✪ Деформация и силы упругости. Закон Гука | Физика 10 класс #14 | Инфоурок

    ✪ Деформация

    Субтитры

Виды деформации

Наиболее простые виды деформации тела в целом:

В большинстве практических случаев наблюдаемая деформация представляет собой совмещение нескольких одновременных простых деформаций. В конечном счёте, любую деформацию можно свести к двум наиболее простым: растяжению (или сжатию) и сдвигу .

Изучение деформации

Природа пластической деформации может быть различной в зависимости от температуры , продолжительности действия нагрузки или скорости деформации. При неизменной нагрузке, приложенной к телу, деформация изменяется со временем; это явление называется ползучестью . С возрастанием температуры скорость ползучести увеличивается. Частными случаями ползучести являются релаксация и упругое последействие . Одной из теорий, объясняющих механизм пластической деформации , является теория дислокаций в кристаллах .

Сплошность

В теории упругости и пластичности тела рассматриваются как «сплошные». Сплошность (то есть способность заполнять весь объём, занимаемый материалом тела, без всяких пустот) является одним из основных свойств, приписываемых реальным телам. Понятие сплошности относится также к элементарным объёмам, на которые можно мысленно разбить тело. Изменение расстояния между центрами каждых двух смежных бесконечно малых объёмов у тела, не испытывающего разрывов, должно быть малым по сравнению с исходной величиной этого расстояния.

Простейшая элементарная деформация

Простейшей элементарной деформацией (или относительной деформацией ) является относительное удлинение некоторого элемента:

ϵ = (l 2 − l 1) / l 1 = Δ l / l 1 {\displaystyle \epsilon =(l_{2}-l_{1})/l_{1}=\Delta l/l_{1}}

На практике чаще встречаются малые деформации - такие, что ϵ ≪ 1 {\displaystyle \epsilon \ll 1} .

Деформацией называется изменение формы и размеров тела под действием приложенных сил (напряжений, т. е. растяжения, сжатия, фазовые превращения, усадка и другие физико-химические процессы, связанные с трансформацией объема). Деформация может быть упругой и пластической (остаточной). Упругой (обратимой) называют деформацию, влияние которой на форму, структуру и свойства тела устраняется после прекращения действия внешних сил. Она не вызывает заметных остаточных изменений в структуре и свойствах металла, а приводит только к незначительному относительному и обратимому смещению ядерных остовов в решетке, вновь прерывающемуся после снятия напряжения. Величина таких отклонений не превышает расстояния между соседними атомами.

Пластической именуют деформацию, остающуюся после прекращения воздействия наружных факторов на металл. При ней структура и свойства металлов изменяются необратимо. Кроме того, пластическая деформация сопровождается дроблением крупных зерен на более мелкие, а при значительных ее степенях также регистрируется заметное изменение их формы и расположение в пространстве, причем между зернами возникают пустоты. Она осуществляется путем относительного сдвига ядер в новые положения устойчивого равновесия на расстояния, значительно превышающие межатомные в кристаллической решетке. Скольжение происходит по плоскостям (направлениям) с наиболее плотной упаковкой атомов. Эти направления зависят от типа кристаллической решетки. У a-железа, вольфрама, молибдена и других металлов с объемноцентрированной кубической решеткой существует шесть плоскостей сдвига и в каждой из них по два направления смещения, и так называемая система скольжения состоит из 6·2 = 12 элементов сдвига. Металлы с гранецентрированной кубической решеткой (g-железо, медь, алюминий и др.) имеют четыре плоскости с тремя направлениями смещения в каждой, т. е. они также обладают 4·3 = 12 элементами сдвига. У цинка, магния и других металлов с гексагональной плотноупакованной решеткой существуют одна плоскость с тремя направлениями и три элемента скольжения. Чем больше элементов сдвига в решетке, тем выше пластичность металла.

Катионы в узлах решетки находятся в равновесном состоянии и обладают минимальной внутренней энергией. Смещение ядер на один параметр решетки называется преодолением энергетического барьера. Для этого необходимо приложение сил или давления (t теор). Оно должно быть очень большим. В реальных металлах пластическая деформация происходит при напряжениях в сотни и тысячи раз меньше теоретического. Расхождение между теоретическим и реальным сопротивлением сдвигу, т. е. теоретической и реальной прочностью при деформации, объясняется дислокационным механизмом.

По современным представлениям пластическая деформация осуществляется под действием внешних сил в результате последовательного перемещения небольшого числа катионов в области дислокации или иначе трансформации дислокаций.

Скольжение или сдвиг по определенным кристаллографическим плоскостям является основным, но не единственным механизмом пластической деформации. В некоторых случаях она может осуществляться двойникованием, сущность которого заключается в том, что под действием приложенных сил одна часть решетки оказывается смещенной относительно другой, занимая симметричное положение и являясь как бы ее зеркальным отражением. По современным представлениям, двойникование связано с движением дислокаций.

Зависимость между приложенным извне напряжением и вызванной им деформацией характеризует механические свойства металлов (рис. 1.57). Наклон прямой ОА показывает жесткость. Тангенс ее угла (tga) пропорционален модулю упругости. Различают два его вида. Модуль нормальной упругости – Юнга (G) = tga, и касательной упругости – Гука (E).

Рис. 1.57 - Диаграмма истинных напряжений при деформации металлов

Возможность металлов значительно деформироваться называется «сверхпластичностью». В общем случае сверхпластичность – это способность металлов к повышенной равномерной деформации без упрочнения. Существует несколько ее разновидностей. Наиболее же перспективна структурная сверхпластичность. Она проявляется при температурах выше половины значения температуры плавления металлов с величиной размера зерна от 0,5 до 10 мкм и небольших скоростях деформации 10 -5 - 10 -1 с -1 . Известно много сплавов на основе магния, алюминия, меди, титана и железа, деформирование которых возможно в режимах сверхпластичности. Данное явление в промышленности применяют главным образом при объемной изотермической штамповке. Недостатком ее является необходимость нагрева штампов до температуры обработки и малая скорость деформации. Сверхпластичность может иметь место лишь при условии, когда в процессе деформации пластичность металла не уменьшается и не происходит локальных изменений формы и размеров материала. Проблема создания промышленного структурного сверхпластичного материала – это прежде всего получение ультрамелкого равноосного зерна и сохранение его при сверхпластической деформации.

С процессом деформации человек начинает сталкиваться с первых дней своей жизни. Она позволяет нам чувствовать прикосновения. Ярким примером деформации из детства можно вспомнить пластилин. Существуют разные виды деформации. Физика рассматривает и изучает каждый из них. Для начала введём определение самого процесса, а затем постепенно рассмотрим возможные классификации и виды деформации, которые могут возникать в твёрдых объектах.

Определение

Деформация - это процесс перемещения частиц и элементов тела относительно взаимного местоположения в теле. Проще говоря, это физическое изменение внешних форм какого-либо объекта. Есть следующие виды деформации:

  • сдвиг;
  • кручение;
  • изгиб;

Как и любую другую физическую величину, деформацию можно измерить. В простейшем случае используется следующая формула:

е=(р 2 -р 1)/р 1,

где е - это простейшая элементарная деформация (увеличение или уменьшение длины тела); р 2 и р 1 - длина тела после и до деформации соответственно.

Классификация

В общем случае можно выделить следующие виды деформации: упругие и неупругие. Упругие, или обратимые, деформации исчезают после того, как пропадает воздействующая на них сила. Основа этого физического закона используется в силовых тренажёрах, например, в эспандере. Если говорить о физической составляющей, то в основе лежит обратимое смещение атомов - они не выходят за пределы взаимодействия и рамки межатомных связей.

Неупругие (необратимые) деформации, как вы понимаете, являются противоположным процессом. Любая сила, которую приложили к телу, оставляет следы/деформацию. К этому типу воздействия относится и деформация металлов. При таком типе изменения формы зачастую могут меняться и другие свойства материала. Например, при деформации, вызванной охлаждением, может увеличиться прочность изделия.

Сдвиг

Как уже было сказано, существуют различные виды деформации. Они подразделяются по характеру изменения формы тела. В механике сдвигом называют такое изменение формы, при котором нижняя часть бруса закреплена неподвижно, а сила прикладывается касательно к верхней поверхности. Относительная деформация сдвига определяется по следующей формуле:

где Х 12 - это абсолютный сдвиг слоёв тела (то есть расстояние, на которое сместился слой); В - это расстояние между закреплённым основанием и параллельным сдвинутым слоем.

Кручение

Если виды механических деформаций разделяли бы по сложности вычислений, то этот занял бы первое место. Такой вид изменения формы тела возникает при воздействии на него двух сил. При этом смещение любой точки тела происходит перпендикулярно к оси воздействующих сил. Говоря о таком типе деформации, следует упомянуть следующие величины, подлежащие вычислению:

  1. Ф - угол закручивания цилиндрического стержня.
  2. Т - момент действия.
  3. Л - длина стержня.
  4. Г - момент инерции.
  5. Ж - модуль сдвига.

Формула выглядит так:

Ф=(Т*Л)/(Г*Ж).

Другая величина, требующая вычисления, это относительный угол закручивания:

Q=Ф/Л (значения берутся из предыдущей формулы).

Изгиб

Это вид деформации, возникающий при изменении положения и формы осей бруса. Он также подразделяется на два типа - косой и прямой. Прямой изгиб - это такой вид деформации, при котором действующая сила приходится прямо на ось рассматриваемого бруса, в любом другом случае речь идёт о косом изгибе.

Растяжение-сжатие

Различные виды деформации, физика которых достаточно хорошо изучена, редко используются для решения различных задач. Однако при обучении в школе один из них зачастую применяется для определения уровня знаний учеников. Кроме этого названия, у данного типа деформации также присутствует другое, которое звучит так: линейное напряженное состояние.

Растяжение (сжатие) происходит, если сила, воздействующая на объект, проходит через центр его массы. Если говорить о визуальном примере, то растяжение приводит к увеличению длины стержня (иногда к разрывам), а сжатие - к уменьшению длины и возникновению продольных изгибов. Напряжение, вызываемое таким видом деформации, прямо пропорционально силе, воздейсвующей на тело, и обратно пропорционально площади поперечного сечения бруса.

Закон Гука

Основной закон, рассматриваемый при деформации тела. Согласно ему, деформация, возникающая в теле, прямо пропорциональна воздействующей силе. Единственная оговорка заключается в том, что он применим только при малых значениях деформации, поскольку при больших значениях и превышении предела пропорциональности эта связь становится нелинейной. В простейшем случае (для тонкого растяжимого бруска) закон Гука имеет следующий вид:

где Ф - это приложенная сила; к - коэффициент упругости; Л - это изменение длины бруса.

Если с двумя величинами всё понятно, то коэффициент (к) зависит от нескольких факторов, таких как материал изделия и его размеры. Его значение также можно вычислить по следующей формуле:

где Е - это модуль Юнга; С - площадь поперечного сечения; Л - длина бруса.

Выводы

На самом деле существует множество способов вычисления деформации предмета. Различные виды деформации используют разные коэффициенты. Виды деформации отличаются не только по форме результата, но и по силам, воздействующим на объект, а для вычислений вам потребуются недюжинные усилия и знания в области физики. Надеемся, что эта статья поможет вам разобраться в понимании базовых физических законов, а также позволит продвинуться немного дальше в изучении этого