Реферат «Проекты отечественной космонавтики. Искусственные спутники Земли

4 октября 1957 года на околоземную орбиту был выведен первый в мире искусственный спутник Земли. Так началась космическая эра в истории человечества. С тех пор искусственные спутники исправно помогают изучать космические тела нашей галактики

Искусственные спутники Земли (ИСЗ)

В 1957 году СССР первыми запустили спутник на околоземную орбиту. Вторыми это сделали США, год спустя. Потом уже многие страны запускали свои спутники на орбиту Земли - правда, для этого зачастую использовались спутники, купленные в тех же СССР, США или Китае. Сейчас спутники запускаются даже радиолюбителями. Однако у многих ИСЗ есть важные задачи: астрономические спутники исследуют галактику и космические объекты, биоспутники помогают проводить научные эксперименты над живыми организмами в космосе, метеорологические ИСЗ позволяют предсказывать погоду и наблюдать за климатом Земли, а задачи навигационных и спутников связи ясны из их названия. Спутники могут находиться на орбите от нескольких часов до нескольких лет: так, пилотируемые космические корабли могут стать краткосрочным искусственным спутником, а космическая станция - долговременным космическим кораблем на орбите Земли. Всего с 1957 года было запущено более 5800 спутников, 3100 из них по-прежнему в космосе, однако работают из этих трех тысяч лишь около одной тысячи.

Искусственные спутники Луны (ИСЛ)

ИСЛ в свое время очень помогли в изучении Луны: выходя на ее орбиту, спутники фотографировали лунную поверхность в высоком разрешении и отправляли снимки на Землю. Кроме того, по изменению траектории спутников можно было сделать выводы о поле тяготения Луны, особенности ее формы и внутреннего строения. Здесь Советский Союз вновь опередил всех: в 1966 году первой на лунную орбиту вышла советская автоматическая станция «Луна-10». А за последующие три года было запущено еще 5 советских спутников серии «Луна» и 5 американских - серии «Лунар орбитер».

Искусственные спутники Солнца

Любопытно, что до 1970-ых годов искусственные спутники появлялись у Солнца… по ошибке. Первым таким спутником стал «Луна-1», промахнувшийся мимо Луны и вышедший на орбиту Солнца. И это при том, что перейти на гелиоцентрическую орбиту не так просто: аппарат должен набрать вторую космическую скорость, не превысив при этом третьей. А сближаясь с планетами, аппарат может замедлиться и стать спутником планеты, или ускориться и вовсе покинуть солнечную систему. Но вот спутники NASA, вращающиеся вокруг Солнца вблизи земной орбиты, стали выполнять детальные измерения параметров солнечного ветра. Японский спутник около десяти лет наблюдал за Солнцем в рентгеновском диапазоне - до 2001 года. Россия запустила солнечный спутник в 2009 году: «Коронас-Фотон» будет исследовать наиболее динамичные солнечные процессы и круглосуточно наблюдать за солнечной активностью, чтобы прогнозировать геомагнитные возмущения.

Искусственные спутники Марса (ИСМ)

Первыми искусственными спутниками Марса стали… сразу три ИСМ. Два космических зонда выпустил СССР («Марс-2» и «Марс-3») и еще один - США («Маринер-9»). Но дело не в том, что запуск проходил «наперегонки» и произошла така янакладка: у каждого из этих спутников была своя задача. Все три ИСМ были выведены на существенно разные эллиптические орбиты и выполняли разные научные исследования, дополняя друг друга. «Маринер-9» производил схемку поверхности Марса для картографирования, а советские спутники изучали характеристики планеты: обтекание Марса солнечным ветром, ионосферу и атмосферу, рельеф, распределение температуры, количество паров воды в атмосфере и прочие данные. К тому же, «Марс-3» первым в мире произвел мягкую посадку на поверхность Марса.

Искусственные спутники Венеры (ИСВ)

Первыми ИСВ вновь стали советские космические аппараты. «Венера-9» и «Венера-10» вышли на орбиту в 1975 году. Достигнув планеты. Они разделились на спутники и спускаемые на планету аппараты. Благодаря радиолокации ИСВ ученые смогли получить радиоизображения с высокой степенью детализации, а мягко опустившиеся на поверхность Венеры аппараты сделали первые в мире фотографии поверхности другой планеты… Третьим спутником стал американский «Пионер-Венера-1» — его запустили спустя три года.

Юдакова Дарья

В настоящее время всё большую актуальность приобретает развитие космической промышленности, так как искусственные спутники Земли помогают изучать Землю, рационально эксплуатировать природные ресурсы , охранять окружающую среду. Тысячи учёных, инженеров и техников уже сегодня ищут новые решения, закладывают основы космических аппаратов, которые через несколько лет придут на смену уже бороздящим вселенную.

Скачать:

Предварительный просмотр:

муниципальное бюджетное общеобразовательное учреждение

города Ростова-на-Дону

«Школа № 60 имени пятого гвардейского Донского казачьего кавалерийского Краснознаменного Будапештского корпуса»

(МБОУ «Школа № 60»)

__________________________________________________________________

РЕФЕРАТ

«Проекты отечественной космонавтики. Искусственные спутники Земли»

Выполнила:

ученица 4 «В» класса

Юдакова Дарья Учитель:

Храмцова Елена Анатольевна

г. Ростов-на-Дону

2016 год

Введение ………………………………………………………..……………..3

  1. Развитие космонавтики ……………………………………………………4
  1. Легенды и мифы о космосе……………………………………………….4
  2. Создание в СССР ракетной отрасли науки и промышленности……….4
  3. Шаг к звёздам. Первый искусственный спутник Земли………………5
  4. Глобальная навигационная спутниковая система……………………5-7
  5. Решения на основе технологий ГЛОНАСС………………………….7-8
  6. Крупнейшие проекты современной отечественной космонавтики…8-9
  1. Изготовление макета искусственного спутника Земли…………………9

Заключение………………………………………………………………10-11

Список литературы………………………………………………………….11

Приложение………………………………………………………………12-13

Введение

«Первый великий шаг человечества состоит в том, чтобы вылететь за атмосферу и сделаться спутником Земли. Остальное сравнительно легко, вплоть до удаления от нашей Солнечной системы».

К. Д. Циолковский

Быть может, уже много тысяч лет назад, глядя на ночное небо, человек мечтал о полёте к звездам. Мириады мерцающих ночных светил заставляли его уноситься мыслью в безбрежные дали Вселенной, будили воображение, заставляли задумываться над тайнами мироздания. Шли века, человек приобретал всё большую власть над природой, но мечта о полёте к звездам оставалась всё такой же несбыточной, как тысячи лет назад.

Великая честь открыть людям дорогу к другим мирам выпала на долю нашего соотечественника К. Э. Циолковского. Идеи Циолковского получили всеобщее признание ещё в 1920-е годы.

В 2016 г. мы отмечаем 70-летний юбилей отечественной космической промышленности - 13 мая 1946 г. Сталин И. В. подписал постановление о создании в СССР ракетной отрасли науки и промышленности.

В настоящее время всё большую актуальность приобретает развитие космической промышленности, так как искусственные спутники Земли помогают изучать Землю, рационально эксплуатировать природные ресурсы , охранять окружающую среду. Тысячи учёных, инженеров и техников уже сегодня ищут новые решения, закладывают основы космических аппаратов, которые через несколько лет придут на смену уже бороздящим вселенную.

Цель проекта: определить, что такое искусственные спутники Земли, изучить область их использования.

Задачи: изучить материал по данному вопросу, изготовить макет первого искусственного спутника.

  1. Развитие космонавтики

1.1 Легенды и мифы о космосе

Легенды и мифы всех народов полны рассказов о полете к Луне, Солнцу и звёздам. Средства для таких полётов, предлагавшиеся народной фантазией, были примитивны: колесница, влекомая орлами, крылья, прикрепленные к рукам человека.

В 17 веке появился фантастический рассказ французского писателя Сирано де Бержерака о полете на Луну. Герои этого рассказа добрался до Луны в железной полоске, над которой он все время подбрасывал сильный магнит. Притягиваясь к нему, полоска все выше поднималась над Землей, пока не достигла Луны. «Из пушки на Луну» отправились герои Жюля Верна. Известный английский писатель Герберт Уэльс описал фантастическое путешествие на Луну в снаряде, корпус которого был сделан из материала, не подверженного силе тяготения.

Предлагались разные средства для осуществления космического полета. Писатели фантасты упоминали и ракеты. Однако эти ракеты были технически необоснованной мечтой. Учёные за многие века не назвали единственного находящегося в распоряжении человека средства, с помощью которого можно преодолеть могучую силу земного притяжения и унестись в межпланетное пространство.

1.2 Создание в СССР ракетной отрасли науки и промышленности

13 мая 1946 г . Сталин подписал постановление о создании в СССР ракетной отрасли науки и промышленности. В августе С. П. Королёв был назначен главным конструктором баллистических ракет дальнего действия.

Но еще в 1931 году в СССР была создана Группа изучения реактивного движения, которая занималась конструированием ракет. В этой группе работали Цандер, Тихонравов, Победоносцев, Королёв . В 1933 году на базе этой группы был организован Реактивный институт, который продолжил работы по созданию и совершенствованию ракет.

Цели запуска: проверка расчётов и основных технических решений, принятых для запуска; ионосферные исследования прохождения радиоволн, излучаемых передатчиками спутника; экспериментальное определение плотности верхних слоёв атмосферы по торможению спутника;

исследование условий работы аппаратуры.

Несмотря на то, что на спутнике полностью отсутствовала какая-либо научная аппаратура, изучение характера радиосигнала и оптические наблюдения за орбитой позволили получить важные научные данные.

1.3 Первый искусственный спутник Земли

Для реализации такой сложной задачи, как запуск искусственного спутника Земли, требовалось объединение огромных научных сил и технических средств. Этот первый шаг в космос был очень труден.

Не случайно еще К. Э. Циолковский говорил, что в освоении космического пространства «Первый великий шаг человечества состоит в том, чтобы вылететь за атмосферу и сделаться спутником Земли. Остальное сравнительно легко, вплоть до удаления от нашей Солнечной системы».

Спутник-1 - первый искусственный спутник Земли, первый космический аппарат, запущен на орбиту в СССР 4 октября 1957 года.

Кодовое обозначение спутника - ПС-1 (Простейший Спутник-1). Запуск осуществлялся с 5-го научно-исследовательского полигона министерства обороны СССР «Тюра-Там» (позже это место получило название космодром Байконур) на ракете-носителе «Спутник» (Р-7).

Над созданием искусственного спутника Земли во главе с основоположником практической космонавтики С. П. Королёвым работали ученые М. В. Келдыш, М. К. Тихонравов, Н. С. Лидоренко и многие другие.

Корпус спутника состоял из двух полусфер диаметром 58 см из алюминиевого сплава со стыковочными шпангоутами, соединёнными между собой 36 болтами. Герметичность стыка обеспечивала резиновая прокладка. В верхней полуоболочке располагались две антенны, каждая из двух штырей по 2,4 м и по 2,9 м. Так как спутник был неориентирован, то четырёхантенная система давала равномерное излучение во все стороны.

Внутри герметичного корпуса были размещены блок электрохимических источников; радиопередающее устройство; вентилятор; термореле и воздуховод системы терморегулирования; коммутирующее устройство бортовой электроавтоматики; датчики температуры и давления; бортовая кабельная сеть. Масса первого спутника: 83,6 кг.

Дата запуска первого искусственного спутника Земли считается началом космической эры человечества, а в России отмечается как памятный день Космических войск.

  1. Глобальная навигационная спутниковая система

ГЛО бальная НА вигационная С путниковая С истема (ГЛОНАСС) - советская и российская спутниковая система, которую начали разрабатывать в 1976 году. Официально принята в эксплуатацию в 1993 году. Всего с 1982 по 1998 год на орбиту было выведено 74 космических аппарата, по ценам 1997 года на развёртывание было потрачено 2,5 млрд долларов. К 1995 году группировка была развёрнута практически до штатного состава - до 24 спутников.

Однако дальше из-за слабого финансирования и малого срока службы спутников их число начало стремительно сокращаться. К 2001 году осталось только 6 действующих космических аппаратов. В августе 2001 года была принята федеральная целевая программа «Глобальная навигационная система», согласно которой покрытие России должно быть обеспечено к 2008 году, а глобальное покрытие в 2010 году. Эта программа с небольшими поправками была реализована. 2 сентября 2010 года группировка ГЛОНАСС составляла 26 спутников.

ФЦП «Поддержание, развитие и использование системы ГЛОНАСС на 2012-2020 годы» предусматривает изготовление 13 «Глонасс-М» со сроком службы 7 лет и 22 «Глонасс-К» со сроком службы 10 лет.

Кроме Российской ГЛОНАСС сейчас действует только одна глобальная навигационная система: американская GPS. Для своего функционирования, как и российской ГЛОНАСС, ей требуется 24 работающих спутника.

На планете неспешно развёртывается ещё несколько спутниковых навигационных систем:

Китайская система «Бэйдоу», уже насчитывает 16 спутников из примерно 30-35. Уже функционирует как региональная навигационная система, к 2020 году планируется стать глобальной;

Европейская система «Галилео», спутники которой выводятся с помощью ракет «Союз-СТБ» с космодрома в Куру. Первые виды услуг должны быть предоставлены в 2014 году;

Индийская IRNSS, из 7 спутников, будет обеспечивать покрытие только самой Индии и сопредельных территорий. Окончание завершения работ - 2015 год.

Особняком стоят системы дифференциальной коррекции, которые позволяют заметно увеличить точность позиционирования. Такие системы могут включать как наземные пункты измерения, так и ретрансляторы сигналов на спутниках (обычно на геостационарных и геосинхронных орбитах). Для ГЛОНАСС роль такой системы выполняет Российская система дифференциальной коррекции и мониторинга (СДКМ) .

Первые российские смартфоны с поддержкой ГЛОНАСС вызывали град вполне обоснованной критики из-за высокой цены и скромных технических характеристик. Скептики высказывали мнение, что для ГЛОНАСС путь на потребительский рынок закрыт. Тем не менее, сегодня российская спутниковая система используется ведущими мировыми брендами: Apple, BlackBerry, HP, HTC, Nokia, Samsung, Sharp, Sony Ericsson и другими.

Поддержка ГЛОНАСС часто никак не отображается в интерфейсе мобильных устройств, чипсет автоматически выбирает наиболее подходящие спутники. Например, отечественный чип ML8088s позволяет определять местоположение по спутникам GPS, ГЛОНАСС и GALILEO.

1.5 Решения на основе технологий ГЛОНАСС

Решения на основе технологий ГЛОНАСС активно внедряются в нашу жизнь. Современные системы мониторинга и управления транспортом позволяют снижать затраты на перевозку людей и грузов, экономить топливо, оптимизировать логистику, уменьшать выбросы в атмосферу- всё вместе это даёт значительный экономический эффект.

Кроме того, космические системы обеспечивают безопасность граждан. Ежегодно на российских дорогах погибают более 30 тысяч человек в основном трудоспособного возраста. Применение технологий спутниковой навигации позволяет оптимизировать алгоритмы управления дорожным движением, работу бригад "Скорой помощи", спасателей, нарядов ДПС, страховых компаний.

Решения на основе технологий ГЛОНАСС активно внедряются правоохранительными органами. Это позволяет эффективно использовать имеющиеся в распоряжении стажей правопорядка силы и средства. В итоге применение спутниковой навигации в Министерстве внутренних дел позволило повысить раскрываемость "по горячим следам", в том числе таких тяжких преступлений, как разбои, грабежи.

Планируется использование ГЛОНАСС/GPS-технологий в мобильных телефонах, смартфонах с теми же функциями-сигнал в службу спасения вместе с информацией о позиционировании. Кроме этого, в разработке находится проект "Социальный ГЛОНАСС" для людей с ограниченными возможностями, например с ослабленным зрением - им система может помочь ориентироваться на улицах, а также больным, детям.

Без использования современных навигационных технологий трудно будет обеспечить конкурентоспособность национальной экономики. Глобальная навигационная система как нельзя лучше подходит на роль локомотива инновационного развития отечественной экономики. Её возможности востребованы практически во всех отраслях - от энергетики и связи до строительства, сельского хозяйства, транспорта.

Специально организуемые позиционные и дальномерные синхронные наблюдения спутников (одновременно с нескольких станций) методами спутниковой геодезии позволяют осуществлять геодезическую привязку пунктов, удалённых на тысячи км друг от друга, изучать движение материков и т. п.

В 1968 г. в нашей стране создана метеорологическая система «Метеор». В нее входит несколько спутников, находящихся одновременно в полете на разных орбитах. На борту каждого - две телевизионные камеры. Они ведут наблюдения за облачным покровом планеты. На ночной стороне Земли съёмка проводится с помощью инфракрасных лучей, позволяющих фиксировать контуры материков, морей , облачных образований. Подобные сведения постоянно передаются в Гидрометеоцентр. По ним составляются сводки и прогнозы погоды.

Метеорологические спутники дают картину распределения облаков над всей планетой, даже над теми территориями, где нет наземных метеорологических станций. А ведь динамика атмосферы во многом связана с такими безлюдными районами, как Арктика и Антарктика , труднодоступными высокогорьями и океаническими просторами. И еще одно достоинство спутников: они ведут наблюдения постоянно, следят за перемещением ураганов, помогая заблаговременно предупреждать жителей о грозящей опасности.

Метеорологические спутники предоставляют ценный материал для земледельцев, летчиков, моряков, рыбаков - всех тех, кого интересует прогноз погоды; они приносят ощутимую пользу народному хозяйству.

Итак, искусственные спутники Земли помогают изучать Землю, рационально эксплуатировать природные ресурсы , охранять окружающую среду.

1.6 Крупнейшие проекты современной отечественной космонавтики

Уже реализованы полностью или практически полностью:

  • Космический радиотелескоп «Радиоастрон», крупнейший в мире телескоп с разрешением в 1000 раз больше, чем у «Хаббла»;
  • ГЛОНАСС, одна из двух действующих в мире глобальных систем спутникового геопозиционирования;
  • Международная космическая станция, крупный проект, главные роли в котором играют Россия и США;
  • Морской старт, единственный в мире плавучий космодром;
  • В Южной Корее создается РН KSLV-1 совместно с ГКНПЦ имени М. В. Хруничева - фактически проведены летные испытания модуля первой ступени РН «Ангара» - УРМ-1;
  • Стартовый комплекс «Союз» на космодроме в Куру;
  • Конверсионная ракета-носитель «Рокот» со стартовым комплексом, переделанным из-под РН «Космос» на космодроме «Плесецк» и разгонным блоком «Бриз-КМ»;
  • «Протон-М» - глубокая модернизация ракеты «Протон-К», с разработкой под нее разгонного блока «Бриз-М».

В процессе реализации находятся следующие проекты:

  • «Союз-2» - глубокая поэтапная модернизация ракеты-носителя «Союз». В значительной степени уже выполнена, в ближайшее время в рамках проекта должен войти в строй носитель лёгкого класса «Союз-2 этапа 1в», представляющий собой, по сути, ракету «Союз» без боковых блоков;
  • Семейство модульных ракет-носителей «Ангара»;
  • Перспективная пилотируемая транспортная система;
  • Космодром Восточный;
  • Транспортная космическая система с ядерной силовой установкой;
  • Проект по исследованию Марса «ЭкзоМарс» (совместно с Европейским космическим агентством);
  • Космический телескоп «Спектр-РГ» (диапазона рентгеновских и гамма-лучей).

В ближней перспективе ожидается начало работ по следующим проектам, предусмотренным документами Роскосмоса:

  • Создание космического ракетного комплекса с ракетой-носителем сверхтяжелого класса грузоподъемностью более 50 тонн;
  • Создание космического ракетного комплекса с ракетой-носителем с многоразовой первой ступенью.
  1. Изготовление макета искусственного спутника Земли

Для изготовления макета искусственного спутника Земли потребуется две металлические полусферы, которые я соединила межу собой с помощью пластина и заклёпок. Затем, произвожу разметку для крепления антенн на корпусе по металлическим прямоугольным бобышкам, имеющим сквозные отверстия, и высверливаю их. Приобретённые заранее телевизионные антенны расплющиваю у основания и просверливаю в них аналогичные отверстия. Соединяю корпус спутника с антеннами также при помощи заклёпок.

Заключение

Космонавтика нужна науке - она грандиозней и могучий инструмент изучения Вселенной, Земли, самого человека.

С каждым днём всё более расширяется сфера прикладного использования космонавтики. Служба погоды, навигация, спасение людей и спасение лесов, всемирное телевидение, всеобъемлющая связь, сверхчистые лекарства и полупроводники с орбиты, самая передовая технология - это уже и сегодняшний день, и очень близкий завтрашний день космонавтики. А впереди - электростанции в космосе, удаление вредных производств с поверхности планеты, заводы на околоземной орбите и Луне. И многое-многое другое.

Много изменений произошло в нашей стране. Распался Советский Союз, образовалось Содружество Независимых Государств. В одночасье оказалась неопределенной и судьба советской космонавтики. Но надо верить в торжество здравого смысла. Наша страна была пионером в области исследования космоса. Космическая отрасль долгое время была у нас символом прогресса предметом законной гордости нашей страны.

Космонавтика была частью политики - наши космические достижения должны были "еще раз продемонстрировать преимущество социалистического строя". Поэтому в официальных отчетах и монографиях с большой помпой описывались наши достижения и скромно умалчивалось о неудачах, а главное об успехах наших главных оппонентов - американцев.

Сейчас появились, наконец, публикации правдиво, без лишней помпезности и с изрядной долей самокритики рассказывающие о том как проходило у нас исследование межпланетного пространства и мы видим, что не все шло легко и гладко. Это ничуть не умаляет достижений нашей космической отрасли – напротив, свидетельствует о твердости и духе людей, несмотря на неудачи шедших к цели. Наши достижения в космосе не будут преданы забвению и получат дальнейшее развитие в новых идеях. Космонавтика жизненно необходима всему человечеству!

Это громадный катализатор современной техники, ставший за невиданно короткий срок одним из главный рычагов современного мирового процесса. Она стимулирует развитие электроники, машиностроения, материаловедения, вычислительной техники, энергетики и многих других областей народного хозяйства.

Исследования, проводимые на спутниках и орбитальных комплексах, исследования других планет позволяют расширить наши представления о Вселенной, о Солнечной системе, о нашей собственной планете, понять наше место в этом мире. Поэтому необходимо продолжать не только освоение Космоса для наших чисто практических нужд, но и фундаментальные исследования на космических обсерваториях, и исследования планет нашей Солнечной системы.

Источники информации

ДЕСЯТЬ ПРИЧИН ИССЛЕДОВАТЬ КОСМОС

1. Развитие технологий. Сотни технологических разработок уже перекочевали из космоса на Землю и стали частью повседневной жизни миллионов людей.

2. Научные открытия, совершаемые с помощью космических исследований, позволяют пополнить наши знания о природе Вселенной и продвигают фундаментальные области науки.

3. Космос может помочь решить энергетические проблемы человечества. На данный момент наиболее перспективным вариантом является добыча изотопа гелия-3 на Луне.

4. Космическая индустрия дает работу сотням тысяч людей во многих странах. Ежегодный оборот мировой космической индустрии составляет $170 млрд.

5. Прямым развитием космической программы является космический туризм, с годами он станет крупной отраслью, обеспечивая работой многих людей и принося большие прибыли.

6. Космос неразрывно связан с военными технологиями, в перспективе возможно создание космических видов оружия, которые будут многократно превосходить существующие ныне.

Например, кинетическое оружие. Запущенный с орбиты небольшой астероид будет во много раз страшнее любой атомной бомбы.

7. Только располагая мощными космическими технологиями, можно обеспечить защиту планеты от астероидов, подобных тем, которые уничтожили динозавров 70 млн. лет назад.

8. Создание баз на Луне и Марсе станет подготовкой резервных убежищ для человечества на случай катаклизмов на Земле. Эти колонии также спасут планету от практически неизбежного перенаселения.

9. Космос имеет огромное политическое значение, успехи во внеземном пространстве поднимают престиж страны.

10. Космос является глобальной целью, вокруг которой со временем может объединиться все человечество, навсегда позабыв о внутренних межнациональных и религиозных распрях.

Мы давно привыкли, что живем в эпоху освоения космоса. Однако, наблюдая сегодня за огромными многоразовыми ракетами и космическими орбитальными станциями многие не осознают, что первый запуск космического аппарата состоялся не так давно – всего 60 лет назад.

Кто запустил первый искусственный спутник Земли? – СССР. Этот вопрос имеет большое значение, так как это событие дало начало так называемой космической гонке между двумя сверхдержавами: США и СССР.

Как назывался первый в мире искусственный спутник Земли? – так как подобные аппараты ранее не существовали, советские ученые посчитали, что название «Спутник-1» вполне подходит для данного аппарата. Кодовое обозначение аппарата – ПС-1, что расшифруется как «Простейший Спутник-1».

Внешне спутник имел довольно незамысловатый вид и представлял собой алюминиевую сферу диаметром 58 см к которой были прикреплены крест-накрест две изогнутые антенны, позволяющие устройству равномерно и во всех направлениях распространять радиоизлучение. Внутри сферы, сделанной из двух полусфер, скрепленных 36 болтами, располагались 50-киллограмовые серебряно-цинковые аккумуляторы, радиопередатчик, вентилятор, термостат, датчики давления и температуры. Общая масса устройства составила 83,6 кг. Примечательно, что радиопередатчик вещал в диапазоне 20 МГц и 40 МГц, то есть следить за ним могли и обычные радиолюбители.

История создания

История первого космического спутника и космических полетов в целом начинается с первой баллистической ракеты – Фау-2 (Vergeltungswaffe-2). Ракета была разработана известным немецким конструктором — Вернером фон Брауном в конце Второй мировой войны. Первый тестовый запуск прошел в 1942-м году, а боевой – 1944-м., всего было выполнено 3225 запусков в основном по территории Великобритании. После войны Вернер фон Браун сдался армии США, в связи с чем возглавил Службу проектирования и разработки вооружения в США. Еще в 1946-м году немецкий ученый представил Минобороны США доклад «Предварительная конструкция экспериментального космического корабля, вращающегося вокруг Земли», где отметил, что в течение пяти лет может быть разработана ракета, способная вывести на орбиту подобный корабль. Однако финансирование проекта не было одобрено.

13-го мая 1946-го года Иосиф Сталин принял постановление о создании ракетной отрасли в СССР. Главным конструктором баллистических ракет был назначен Сергей Королев. Следующие 10 лет учеными были разработаны межконтинентальные баллистические ракеты Р-1, Р2, Р-3 и др.

В 1948-м году ракетный конструктор Михаил Тихонравов провел доклад для научных кругов о составных ракетах и результатах расчетов, согласно которым разрабатываемые 1000-киллометровые ракеты могут достигать больших расстояний и даже вывести на орбиту искусственный спутник Земли. Однако, подобное заявление подверглось критике и не было воспринято всерьез. Отдел Тихонравова в НИИ-4 был расформирован в связи с неактуальными работами, однако позже усилиями Михаила Клавдиевича вновь собран в 1950-м году. Тогда Михаил Тихонравов уже прямо заговорил о миссии по выводу спутника на орбиту.

Модель спутника

После создания баллистической ракеты Р-3 на презентации были представлены ее возможности, согласно которым ракета была способна не только поражать цели на расстоянии 3000 км, но и вывести спутник на орбиту. Так к 1953-му году ученым все же удалось убедить высшее руководство в том, что вывод орбитального спутника возможен. А у руководителей вооруженных сил возникло понимание перспективности разработки и запуска искусственного спутника Земли (ИСЗ). По этой причине в 1954-м году было принято постановление о создании отдельной группы в НИИ-4 с Михаилом Клавдиевичем, которая занималась бы проектированием спутника и планированием миссии. В том же году группа Тихонравова представила программу освоения космоса, от запуска ИСЗ, до высадки на Луну.

В 1955-м году делегация политбюро во главе Н. С. Хрущевым посетила Ленинградский металлический завод, где было окончено строительство двухступенчатой ракеты Р-7. Впечатление делегации вылилось в подписание постановления о создании и выводе на земную орбиту спутника в ближайшие два года. Проектирование ИСЗ началось в ноябре 1956-го года, а в сентябре 1957-го года «Простейший Спутник-1» успешно прошел испытания на вибростенде и в термокамере.

Однозначно на вопрос «кто изобрел Спутник-1?» — ответить нельзя. Разработка первого спутника Земли происходила под руководством Михаила Тихонравова, а создание ракеты-носителя и вывод спутника на орбиту – под началом Сергея Королева. Однако над обоими проектами трудилось немалое число ученых и научных сотрудников.

История запуска

В феврале 1955-го года высшее руководство утвердило создание Научно-исследовательского испытательного полигона №5 (позже Байконур), который должен был располагаться в Казахстанской пустыне. На полигоне проводились испытания первых баллистических ракет типа Р-7, но по результатам пяти опытных запусков стало ясно, что массивная головная часть баллистической ракеты не выдерживает температурной нагрузки и требует доработки, что займет около полугода. По этой причине С. П. Королев запросил от Н. С. Хрущева две ракеты для экспериментального запуска ПС-1. В конце сентября 1957-го года на Байконур прибыла ракета Р-7 с облегченной головой частью и переходом под спутник. Была снята лишняя аппаратура, в результате чего масса ракеты была уменьшена на 7 тонн.

2-го октября С. П. Королев подписал приказ о летных испытаниях спутника и направил уведомление о готовности в Москву. И хотя от Москвы не пришло никаких ответов, Сергей Королев решил произвести вывод ракеты-носителя «Спутник» (Р-7) с ПС-1 на стартовую позицию.

Причина, по которой руководство потребовало вывод спутника на орбиту именно в этот период заключается в том, что с 1 июля 1957 по 31 декабря 1958 проводился так называемый Международный геофизический год. Согласно нему, в указанный период 67 стран совместно и по единой программе проводили геофизические исследования и наблюдения.

Дата запуска первого искусственного спутника — 4 октября 1957-й год. Кроме того, в тот же день проходило открытие VIII международного конгресса астронавтики в Испании, Барселона. Руководители космической программы СССР не раскрывались общественности по причине секретности проводимой работы, о сенсационном запуске спутника конгрессу сообщил академик Леонид Иванович Седов. Поэтому именно советского физика и математика Седова мировая общественность долго считала «отцом Спутника».

История полета

В 22:28:34 по московскому времени произошел запуск ракеты со спутником с первой площадки НИИП № 5 (Байконур). Спустя 295 секунд центральный блок ракеты и спутник были выведены на эллиптическую орбиту Земли (апогей – 947 км, перигей – 288 км). Еще через 20 секунд ПС-1 отделился от ракеты и подал сигнал. Это были повторяющиеся сигналы «Бип! Бип!», которые ловили на полигоне 2 минуты, до тех пор, пока «Спутник-1» не скрылся за горизонтом. На первом витке аппарата вокруг Земли Телеграфное агентство Советского Союза (ТАСС) передало сообщение об успешном запуске первого в мире ИСЗ.

После приема сигналов ПС-1 начали поступать подробные данные об аппарате, который, как оказалось, был близок к тому, чтобы не достичь первой космической скорости и не выйти на орбиту. Причиной этому послужил непредвиденный отказ системы управления подачи топлива, из-за чего один из двигателей запаздывал. От неудачи отделяли доли секунды.

Однако, ПС-1 все же успешно достиг эллиптической орбиты, по которой двигался в течение 92-х дней, при этом выполнил 1440 оборотов вокруг планеты. Радиопередатчики аппарата работали на протяжении первых двух недель. Что стало причиной гибели первого спутника Земли? — Потеряв скорость о трение атмосферы, «Спутник-1» начал снижаться и полностью сгорел в плотных слоях атмосферы. Примечательно, что многие могли наблюдать некий блестящий объект, движущийся по небу в тот период. Но без специальной оптики блестящий корпус спутника нельзя было заметить, и на самом деле этим объектом была вторая ступень ракеты, которая также вращалась на орбите, вместе со спутником.

Значение полета

Первый запуск искусственного спутника Земли в СССР произвел небывалый подъем гордости за свою страну и сильный удар по престижу США. Отрывок из публикации «Юнайтед пресс»: «90 процентов разговоров об искусственных спутниках Земли приходилось на долю США. Как оказалось, 100 процентов дела пришлось на Россию…». И несмотря на ошибочные представления о технической отсталости СССР, первым спутником Земли стал именно советский аппарат, к тому же его сигнал мог отслеживаться любым радиолюбителем. Полет первого спутника Земли ознаменовал начало космической эры и запустил космическую гонку между Советским Союзом и США.

Спустя всего 4 месяца, 1-го февраля 1958-го года США запустили свой спутник «Эксплорер-1», который был собран командой ученого Вернера фон Брауна. И хотя он был в несколько раз легче ПС-1 и содержал 4,5 кг научной аппаратуры, он все же был вторым и уже не так повлиял на общественность.

Научные результаты полёта ПС-1

Запуск данного ПС-1 преследовал несколько целей:

  • Тестирование технической способности аппарата, а также проверка расчетов, принятых для успешного запуска спутника;
  • Исследование ионосферы. До запуска космического аппарата радиоволны, посланные с Земли, отражались от ионосферы, исключая возможность ее изучения. Теперь же ученые смогли начать исследование ионосферы посредством взаимодействия радиоволн, излучаемых спутником из космоса и идущих через атмосферу к поверхности Земли.
  • Расчет плотности верхних слоев атмосферы при помощи наблюдения за темпом замедления аппарата вследствие трения об атмосферу;
  • Исследование влияния космического пространства на аппаратуру, а также определения благоприятных условий для работы аппаратуры в космосе.

Слушать звук Первого спутника

И хотя на спутнике не было никакой научной аппаратуры, слежение за его радиосигналом и анализ его характера давал много полезных результатов. Так группа ученых из Швеции проводила измерения электронного состава ионосферы, опираясь на эффект Фарадея, гласящий об изменении поляризации света при прохождении его через магнитное поле. Также группа советских ученых из МГУ разработала методику наблюдения за спутником с точным определением его координат. Наблюдение за данной эллиптической орбитой и характером ее поведения позволили определить плотность атмосферы в области орбитальных высот. Неожиданно повышенная плотность атмосферы в указанных областях подтолкнула ученых к созданию теории торможения спутников, что внесло свою лепту в развитие космонавтики.


Видео о первом спутнике.

На внешней стороне «Спутника» четыре штыревые антенны передавали на коротковолновой частоте выше и ниже нынешнего стандарта (27 МГц). Станции слежения на Земле поймали радиосигнал и подтвердили, что крошечный спутник пережил запуск и успешно вышел на курс вокруг нашей планеты. Месяцем позже Советский Союз запустил на орбиту «Спутник-2». Внутри капсулы была собака Лайка.

В декабре 1957 года, отчаянно пытаясь идти в ногу со своими противниками по холодной войне, американские ученые попытались вывести спутник на орбиту вместе с планетой Vanguard. К сожалению, ракета разбилась и сгорела еще на стадии взлета. Вскоре после этого, 31 января 1958 года, США повторили успех СССР, приняв план Вернера фон Брауна, который заключался в выводе спутника Explorer-1 с ракетой U.S. Redstone. Explorer-1 нес инструменты для обнаружения космических лучей и обнаружил в ходе эксперимента Джеймса Ван Аллена из Университета Айовы, что космических лучей гораздо меньше, чем ожидалось. Это привело к открытию двух тороидальных зон (в конечном счете названных в честь Ван Аллена), наполненных заряженными частицами, захваченными магнитным полем Земли.

Воодушевленные этими успехами, некоторые компании начали разрабатывать и запускать спутники в 60-х годах. Одной из них была Hughes Aircraft вместе со звездным инженером Гарольдом Розеном. Розен возглавил команду, которая воплотила идею Кларка - спутник связи, размещенный на орбите Земли таким образом, что мог отражать радиоволны из одного места в другое. В 1961 году NASA заключило контракт с Hughes, чтобы построить серию спутников Syncom (синхронная связь). В июле 1963 года Розен и его коллеги увидели, как Syncom-2 взлетел в космос и вышел на грубую геосинхронную орбиту. Президент Кеннеди использовал новую систему, чтобы поговорить с премьер-министром Нигерии в Африке. Вскоре взлетел и Syncom-3, который на самом деле мог транслировать телевизионный сигнал.

Эпоха спутников началась.

Какая разница между спутником и космическим мусором?

Технически, спутник это любой объект, который вращается вокруг планеты или меньшего небесного тела. Астрономы классифицируют луны как природные спутники, и на протяжении многих лет они составили список из сотен таких объектов, обращающихся вокруг планет и карликовых планет нашей Солнечной системы. К примеру, насчитали 67 лун Юпитера. И до сих пор .

Техногенные объекты, вроде «Спутника» и Explorer, также можно классифицировать как спутники, поскольку они, как и луны, вращаются вокруг планеты. К сожалению, человеческая активность привела к тому, что на орбите Земли оказалось огромное количество мусора. Все эти куски и обломки ведут себя как и крупные ракеты - вращаются вокруг планеты на высокой скорости по круговому или эллиптическому пути. В строгом толковании определения можно каждый такой объект определить как спутник. Но астрономы, как правило, считают спутниками те объекты, которые выполняют полезную функцию. Обломки металла и другой хлам попадают в категорию орбитального мусора.

Орбитальный мусор поступает из многих источников:

  • Взрыв ракеты, который производит больше всего хлама.
  • Астронавт расслабил руку - если астронавт ремонтирует что-то в космосе и упускает гаечный ключ, тот потерян навсегда. Ключ выходит на орбиту и летит со скоростью около 10 км/с. Если он попадет в человека или в спутник, результаты могут быть катастрофическими. Крупные объекты, вроде МКС, представляют собой большую мишень для космического мусора.
  • Выброшенные предметы. Части пусковых контейнеров, шапки объективов камер и так далее.

NASA вывело специальный спутник под названием LDEF для изучения долгосрочных эффектов от столкновения с космическим мусором. За шесть лет инструменты спутника зарегистрировали около 20 000 столкновений, некоторые из которых были вызваны микрометеоритами, а другие орбитальным мусором. Ученые NASA продолжают анализировать данные LDEF. А вот в Японии уже гигантскую сеть для отлова космического мусора.

Что внутри обычного спутника?

Спутники бывают разных форм и размеров и выполняют множество различных функций, однако все, в принципе, похожи. Все они имеют металлический или композитный каркас и тело, которое англоязычные инженеры называют bus, а русские - космической платформой. Космическая платформа собирает все вместе и обеспечивает достаточно мер, чтобы инструменты пережили запуск.

У всех спутников есть источник питания (обычно солнечные батареи) и аккумуляторы. Массивы солнечных батарей позволяют заряжать аккумуляторы. Новейшие спутники включают и топливные элементы. Энергия спутников очень дорога и крайне ограничена. Ядерные элементы питания обычно используются для отправки космических зондов к другим планетам.

У всех спутников есть бортовой компьютер для контроля и мониторинга различных систем. У всех есть радио и антенна. Как минимум, у большинства спутников есть радиопередатчик и радиоприемник, поэтому экипаж наземной команды может запросить информацию о состоянии спутника и наблюдать за ним. Многие спутники позволяют массу различных вещей: от изменения орбиты до перепрограммирования компьютерной системы.

Как и следовало ожидать, собрать все эти системы воедино - непростая задача. Она занимает годы. Все начинается с определения цели миссии. Определение ее параметров позволяет инженерам собрать нужные инструменты и установить их в правильном порядке. Как только спецификация утверждена (и бюджет), начинается сборка спутника. Она происходит в чистой комнате, в стерильной среде, что позволяет поддерживать нужную температуру и влажность и защищать спутник во время разработки и сборки.

Искусственные спутники, как правило, производятся на заказ. Некоторые компании разработали модульные спутники, то есть конструкции, сборка которых позволяет устанавливать дополнительные элементы согласно спецификации. К примеру, у спутников Boeing 601 было два базовых модуля - шасси для перевозки двигательной подсистемы, электроника и батареи; и набор сотовых полок для хранения оборудования. Эта модульность позволяет инженерам собирать спутники не с нуля, а с заготовки.

Как спутники запускаются на орбиту?

Сегодня все спутники выводятся на орбиту на ракете. Многие перевозят их в грузовом отделе.

В большинстве запусков спутников запуск ракеты происходит прямо вверх, это позволяет быстрее провести ее через толстый слой атмосферы и минимизировать расход топлива. После того, как ракета взлетает, механизм управления ракеты использует инерциальную систему наведения для расчета необходимых корректировок сопла ракеты, чтобы обеспечить нужный наклон.

После того как ракета выходит в разреженный воздух, на высоту около 193 километров, система навигации выпускает небольшие ракетки, чего достаточно для переворота ракеты в горизонтальное положение. После этого выпускается спутник. Небольшие ракеты выпускаются снова и обеспечивают разницу в расстоянии между ракетой и спутником.

Орбитальная скорость и высота

Ракета должна набрать скорость в 40 320 километров в час, чтобы полностью сбежать от земной гравитации и улететь в космос. Космическая скорость куда больше, чем нужно спутнику на орбите. Они не избегают земной гравитации, а находятся в состоянии баланса. Орбитальная скорость - это скорость, необходимая для поддержания баланса между гравитационным притяжением и инерциальным движением спутника. Это примерно 27 359 километров в час на высоте 242 километра. Без гравитации инерция унесла бы спутник в космос. Даже с гравитацией, если спутник будет двигаться слишком быстро, его унесет в космос. Если спутник будет двигаться слишком медленно, гравитация притянет его обратно к Земле.

Орбитальная скорость спутника зависит от его высоты над Землей. Чем ближе к Земле, тем быстрее скорость. На высоте в 200 километров орбитальная скорость составляет 27 400 километров в час. Для поддержания орбиты на высоте 35 786 километров спутник должен обращаться со скорость 11 300 километров в час. Эта орбитальная скорость позволяет спутнику делать один облет в 24 часа. Поскольку Земля также вращается 24 часа, спутник на высоте в 35 786 километров находится в фиксированной позиции относительно поверхности Земли. Эта позиция называется геостационарной. Геостационарная орбита идеально подходит для метеорологических спутников и спутников связи.

В целом, чем выше орбита, тем дольше спутник может оставаться на ней. На низкой высоте спутник находится в земной атмосфере, которая создает сопротивление. На большой высоте нет практически никакого сопротивления, и спутник, как луна, может находиться на орбите веками.

Типы спутников

На земле все спутники выглядят похоже - блестящие коробки или цилиндры, украшенные крыльями из солнечных панелей. Но в космосе эти неуклюжие машины ведут себя совершенно по-разному в зависимости от траектории полета, высоты и ориентации. В результате, классификация спутников превращается в сложное дело. Один из подходов - определение орбиты аппарата относительно планеты (обычно Земли). Напомним, что существует две основных орбиты: круговая и эллиптическая. Некоторые спутники начинают по эллипсу, а потом выходят на круговую орбиту. Другие движутся по эллиптическому пути, известному как орбита «Молния». Эти объекты, как правило, кружат с севера на юг через полюсы Земли и завершают полный облет за 12 часов.

Полярно-орбитальные спутники также проходят через полюсы с каждым оборотом, хотя их орбиты менее эллиптические. Полярные орбиты остаются фиксированными в космосе, в то время как вращается Земля. В результате, большая часть Земли проходит под спутником на полярной орбите. Поскольку полярные орбиты дают прекрасный охват планеты, они используются для картографирования и фотографии. Синоптики также полагаются на глобальную сеть полярных спутников, которые облетают наш шар за 12 часов.

Можно также классифицировать спутники по их высоте над земной поверхностью. Исходя из этой схемы, есть три категории:

  • Низкая околоземная орбита (НОО) - НОО-спутники занимают область пространства от 180 до 2000 километров над Землей. Спутники, которые движутся близко к поверхности Земли, идеально подходят для проведения наблюдений, в военных целях и для сбора информации о погоде.
  • Средняя околоземная орбита (СОО) - эти спутники летают от 2000 до 36 000 км над Землей. На этой высоте хорошо работают навигационные спутники GPS. Примерная орбитальная скорость - 13 900 км/ч.
  • Геостационарная (геосинхронная) орбита - геостационарные спутники двигаются вокруг Земли на высоте, превышающей 36 000 км и на той же скорости вращения, что и планета. Поэтому спутники на этой орбите всегда позиционируются к одному и тому же месту на Земле. Многие геостационарные спутники летают по экватору, что породило множество «пробок» в этом регионе космоса. Несколько сотен телевизионных, коммуникационных и погодных спутников используют геостационарную орбиту.

И наконец, можно подумать о спутниках в том смысле, где они «ищут». Большинство объектов, отправленных в космос за последние несколько десятилетий, смотрят на Землю. У этих спутников есть камеры и оборудование, которое способно видеть наш мир в разных длинах волн света, что позволяет насладиться захватывающим зрелищем в ультрафиолетовых и инфракрасных тонах нашей планеты. Меньше спутников обращают свой взгляд к пространству, где наблюдают за звездами, планетами и галактиками, а также сканируют объекты вроде астероидов и комет, которые могут столкнуться с Землей.

Известные спутники

До недавнего времени спутники оставались экзотическими и сверхсекретными приборами, которые использовались в основном в военных целях для навигации и шпионажа. Теперь они стали неотъемлемой частью нашей повседневной жизни. Благодаря им, мы узнаем прогноз погоды (хотя синоптики ой как часто ошибаются). Мы смотрим телевизоры и работаем с Интернетом также благодаря спутникам. GPS в наших автомобилях и смартфонах позволяет добраться до нужного места. Стоит ли говорить о неоценимом вкладе телескопа «Хаббл» и работы космонавтов на МКС?

Однако есть настоящие герои орбиты. Давайте с ними познакомимся.

  1. Спутники Landsat фотографируют Землю с начала 1970-х годов, и по части наблюдений за поверхностью Земли они рекордсмены. Landsat-1, известный в свое время как ERTS (Earth Resources Technology Satellite) был запущен 23 июля 1972 года. Он нес два основных инструмента: камеру и многоспектральный сканер, созданный Hughes Aircraft Company и способный записывать данные в зеленом, красном и двух инфракрасных спектрах. Спутник делал настолько шикарные изображения и считался настолько успешным, что за ним последовала целая серия. NASA запустило последний Landsat-8 в феврале 2013 года. На этом аппарате полетели два наблюдающих за Землей датчика, Operational Land Imager и Thermal Infrared Sensor, собирающие многоспектральные изображения прибрежных регионов, полярных льдов, островов и континентов.
  2. Геостационарные эксплуатационные экологические спутники (GOES) кружат над Землей на геостационарной орбите, каждый отвечает за фиксированную часть земного шара. Это позволяет спутникам внимательно наблюдать за атмосферой и выявлять изменения погодных условий, которые могут привести к торнадо, ураганам, паводкам и грозовым штормам. Также спутники используются для оценки сумм осадков и накопления снегов, измерения степени снежного покрова и отслеживания передвижений морского и озерного льда. С 1974 года на орбиту было выведено 15 спутников GOES, но одновременно за погодой наблюдают только два спутника GOES «Запад» и GOES «Восток».
  3. Jason-1 и Jason-2 сыграли ключевую роль в долгосрочном анализе океанов Земли. NASA запустило Jason-1 в декабре 2001 года, чтобы заменить им спутник NASA/CNES Topex/Poseidon, который работал над Землей с 1992 года. На протяжении почти тринадцати лет Jason-1 измерял уровень моря, скорость ветра и высоту волн более 95 % свободных от льда земных океанов. NASA официально списало Jason-1 3 июля 2013 года. В 2008 году на орбиту вышел Jason-2. Он нес высокоточные инструменты, позволяющие измерять дистанцию от спутника до поверхности океана с точностью в несколько сантиметров. Эти данные, помимо ценности для океанологов, предоставляют обширный взгляд на поведение мировых климатических паттернов.

Сколько стоят спутники?

После «Спутника» и Explorer, спутники стали больше и сложнее. Возьмем, к примеру, TerreStar-1, коммерческий спутник, который должен был обеспечить передачу мобильных данных в Северной Америке для смартфонов и подобных устройств. Запущенный в 2009 году TerreStar-1 весил 6910 килограмм. И будучи полностью развернутым, он раскрывал 18-метровую антенну и массивные солнечные батареи с размахом крыльев в 32 метра.

Строительство такой сложной машины требует массы ресурсов, поэтому исторически только правительственные ведомства и корпорации с глубокими карманами могли войти в спутниковый бизнес. Большая часть стоимости спутника лежит в оборудовании - транспондерах, компьютерах и камерах. Обычный метеорологический спутник стоит около 290 миллионов долларов. Спутник-шпион обойдется на 100 миллионов долларов больше. Добавьте к этому стоимость содержания и ремонта спутников. Компании должны платить за пропускную полосу спутника так же, как владельцы телефонов платят за сотовую связь. Обходится иногда это более чем в 1,5 миллиона долларов в год.

Другим важным фактором является стоимость запуска. Запуск одного спутника в космос может обойтись от 10 до 400 миллионов долларов, в зависимости от аппарата. Ракета Pegasus XL может поднять 443 килограмма на низкую околоземную орбиту за 13,5 миллиона долларов. Запуск тяжелого спутника потребует большей подъемной силы. Ракета Ariane 5G может вывести на низкую орбиту 18 000-килограммовый спутник за 165 миллионов долларов.

Несмотря на затраты и риски, связанные с постройкой, запуском и эксплуатацией спутников, некоторые компании сумели построить целый бизнес на этом. К примеру, Boeing. В 2012 году компания доставила в космос около 10 спутников и получила заказы на более чем семь лет, что принесло ей почти 32 миллиарда долларов дохода.

Будущее спутников

Спустя почти пятьдесят лет после запуска «Спутника», спутники, как и бюджеты, растут и крепнут. США, к примеру, потратили почти 200 миллиардов долларов с начала военной спутниковой программы и теперь, несмотря на все это, обладает флотом стареющих аппаратов, ожидающих своей замены. Многие эксперты опасаются, что строительство и развертывание крупных спутников просто не может существовать на деньги налогоплательщиков. Решением, которое может перевернуть все с ног на голову, остаются частные компании, вроде SpaceX, и другие, которых явно не постигнет бюрократический застой, как NASA, NRO и NOAA.

Другое решение - сокращение размера и сложности спутников. Ученые Калтеха и Стэнфордского университета с 1999 года работают над новым типом спутника CubeSat, в основе которого лежат строительные блоки с гранью в 10 сантиметров. Каждый куб содержит готовые компоненты и может объединиться с другими кубиками, чтобы повысить эффективность и снизить нагрузку. Благодаря стандартизации дизайна и сокращению расходов на создание каждого спутника с нуля, один CubeSat может стоить всего 100 000 долларов.

В апреле 2013 года NASA решила проверить этот простой принцип и три CubeSat на базе коммерческих смартфонов. Цель состояла в том, чтобы вывести микроспутники на орбиту на короткое время и сделать несколько снимков на телефоны. Теперь агентство планирует развернуть обширную сеть таких спутников.

Будучи большими или маленькими, спутники будущего должны быть в состоянии эффективно сообщаться с наземными станциями. Исторически сложилось так, что NASA полагалось на радиочастотную связь, но РЧ достигла своего предела, поскольку возник спрос на большую мощность. Чтобы преодолеть это препятствие, ученые NASA разрабатывают систему двусторонней связи на основе лазеров вместо радиоволн. 18 октября 2013 года ученые впервые запустили лазерный луч для передачи данных с Луны на Землю (на расстоянии 384 633 километра) и получили рекордную скорость передачи в 622 мегабита в секунду.

Сегодня эти спутники кажутся до смешного простыми - советские "Спутники 1 и 2" и американские "Эксплорер" и "Авангард". Сейчас студенты делают более сложные космические аппараты. Но в свое время вывод на орбиту вокруг Земли творений рук человеческих было огромным достижением и произвело неизгладимое впечатление на современников. В 1957-1958 годы, в период максимум солнечной активности был проведён международный геофизический год.В рамках МГГ были запущены советские ИСЗ «Спутник-1», «Спутник-2» и «Спутник-3», а также американские спутники «Эксплорер-1», «Авангард-1», «Эксплорер-3» и «Эксплорер-4».
Спутник-1 - первый искусственный спутник Земли , первый космический аппарат, был запущен на орбиту в СССР 4 октября 1957 года. Кодовое обозначение спутника - ПС-1 (Простейший Спутник-1). Запуск осуществлялся с 5-го научно-исследовательского полигона министерства обороны СССР «Тюра-Там» (получившего впоследствии открытое наименование космодром Байконур) на ракете-носителе «Спутник» (Р-7).

Корпус спутника состоял из двух полусфер диаметром 58 см из алюминиевого сплава. Герметичность стыка обеспечивала резиновая прокладка. В верхней полуоболочке располагались две антенны, каждая из двух штырей по 2,4 м и по 2,9 м. Так как спутник был неориентирован, то четырёхантенная система давала равномерное излучение во все стороны.

Первый в мире искусственный спутник Земли.

Внутри герметичного корпуса были размещены: блок электрохимических источников; радиопередающее устройство; вентилятор; термореле и воздуховод системы терморегулирования; коммутирующее устройство бортовой электроавтоматики; датчики температуры и давления; бортовая кабельная сеть. Масса: 83,6 кг.
30 января 1956 г. правительством СССР подписано постановление о создании и выводе на орбиту в 1957-1958 гг. «Объекта „Д“» - спутника массой 1000-1400 кг несущего 200-300 кг научной аппаратуры. Разработка аппаратуры была поручена Академии наук СССР, постройка спутника - ОКБ-1, осуществление пуска - Министерству обороны. К концу 1956 г. стало ясно, что надёжная аппаратура для спутника не может быть создана в требуемые сроки.
14 января 1957 г. Советом Министров СССР утверждена программа лётных испытаний ракеты Р-7. Тогда же Королёв направил докладную записку в Совет Министров, где писал, что в апреле - июне 1957 года могут быть подготовлены две ракеты в спутниковом варианте, «и запущены сразу же после первых удачных пусков межконтинентальной ракеты». В феврале всё ещё продолжались строительные работы на полигоне, две ракеты уже были готовы к отправке. Королёв, убедившись в нереальности сроков изготовления орбитальной лаборатории, шлёт правительству неожиданное предложение:
Имеются сообщения о том, что в связи с Международным геофизическим годом США намерены в 1958 году запустить ИСЗ. Мы рискуем потерять приоритет. Предлагаю вместо сложной лаборатории - объекта «Д» вывести в космос простейший спутник.
15 февраля это предложение было одобрено.
В начале марта первая ракета Р-7 доставлена на техническую позицию полигона, а 5 мая вывезена на стартовую площадку. Подготовка к пуску длилась неделю, на восьмой день началась заправка. Пуск состоялся 15 мая в 19:00 по местному времени. Старт прошёл нормально, но на 98-й секунде полёта произошёл сбой в работе одного из боковых двигателей, ещё через 5 сек все двигатели автоматически отключились и ракета упала в 300 км от старта. Причиной аварии было возникновение пожара в результате разгерметизации топливной коммуникации высокого давления. Вторая ракета, Р-7 подготовлена с учётом полученного опыта, но запустить её вовсе не удалось. 10-11 июня делались многократные попытки пуска, но в последние секунды срабатывала защитная автоматика. Выяснилось, что причиной была неправильная установка клапана азотной продувки и замерзание главного кислородного клапана. 12 июля пуск ракеты Р-7 снова прошёл неудачно, эта ракета пролетела всего 7 километров. Причиной на этот раз стало замыкание на корпус в одном из приборов системы управления, в результате чего прошла ложная команда на рулевые двигатели, ракета значительно отклонилась от курса и была автоматически остановлена.
Наконец, 21 августа 1957 г. осуществился успешный запуск, ракета нормально прошла весь активный участок полёта и достигла заданного района - полигона на Камчатке. Головная часть её полностью сгорела при входе в плотные слои атмосферы, несмотря на это 27 августа ТАСС сообщило о создании в СССР межконтинентальной баллистической ракеты. 7 сентября осуществлён второй полностью успешный полёт ракеты, но головная часть снова не выдержала температурной нагрузки, и Королёв вплотную занялся подготовкой к космическому запуску.
Как писал Б.Е.Черток, по результатам лётных испытаний пяти ракет было очевидно, что она может летать, но головная часть требует радикальной доработки. Это потребует, по расчётам оптимистов, не менее полугода. Разрушение головных частей открыло дорогу для пуска Первого простейшего спутника.
С. П. Королёв получил согласие Н. С. Хрущёва на использование двух ракет для экспериментального пуска простейшего спутника.

Первый вариант Р-7, испытывавшийся в 1957 году.

Проектирование простейшего спутника началось в ноябре 1956 года, а в начале сентября 1957 г. ПС-1 прошёл окончательные испытания на вибростенде и в термокамере. Спутник был разработан как очень простой аппарат с двумя радиомаяками для проведения траекторных измерений. Диапазон передатчиков простейшего спутника был выбран так, чтобы слежение за спутником могли осуществлять радиолюбители.
22 сентября в Тюра-Там прибыла новая ракета Р-7 . По сравнению с военными образцами, она была значительно облегчена: массивная головная часть заменена переходом под спутник, снята аппаратура системы радиоуправления и одна из систем телеметрии, упрощена автоматика выключения двигателей; масса ракеты в результате была уменьшена на 7 тонн.
2 октября Королёвым был подписан приказ о лётных испытаниях ПС-1 и направлено в Москву уведомление о готовности. Ответных указаний не пришло, и Королёв самостоятельно принял решение о постановке ракеты со спутником на стартовую позицию.
В пятницу, 4 октября, в 22 часа 28 минут 34 секунды по московскому времени (19 часов 28 минут 34 секунды по Гринвичу) был совершён успешный запуск. Через 295 секунд после старта ПС-1 и центральный блок ракеты весом 7,5 тонны были выведены на эллиптическую орбиту высотой в апогее 947 км, в перигее 288 км. На 314,5 секунде после старта произошло отделение Спутника и он подал свой голос. «Бип! Бип!» - так звучали его позывные. На полигоне их ловили 2 минуты потом Спутник ушёл за горизонт. Люди на космодроме выбежали на улицу, кричали «Ура!», качали конструкторов и военных. И ещё на первом витке прозвучало сообщение ТАСС: «…В результате большой напряжённой работы научно-исследовательских институтов и конструкторских бюро создан первый в мире искусственный спутник Земли…»
Только после приёма первых сигналов Спутника поступили результаты обработки телеметрических данных и выяснилось, что лишь доли секунды отделяли от неудачи. Один из двигателей «запаздывал», а время выхода на режим жёстко контролируется и при его превышении старт автоматически отменяется. Блок вышел на режим менее, чем за секунду до контрольного времени. На 16-й секунде полёта отказала система управления подачи топлива, и из-за повышенного расхода керосина центральный двигатель отключился на 1 секунду раньше расчётного времени.
"Ещё немного - и первая космическая скорость могла быть не достигнута.
Но победителей не судят!
Великое свершилось!" (Б.Е.Черток).
Спутник летал 92 дня, до 4 января 1958 года, совершив 1440 оборотов вокруг Земли (около 60 млн км), а его радиопередатчики работали в течение двух недель после старта. Из-за трения о верхние слои атмосферы спутник потерял скорость, вошёл в плотные слои атмосферы и сгорел вследствие трения о воздух.
Борис Евсеевич Черток писал: "Общепринятое в то время представление, что без специальной оптики, визуально, мы наблюдаем ночью подсвечиваемый солнцем спутник, неверно. Отражающая поверхность спутника была слишком мала для визуального наблюдения. На самом деле наблюдалась вторая ступень - центральный блок ракеты, который вышел на ту же орбиту, что и спутник. Эта ошибка многократно повторялась в средствах массовой информации"

Несмотря на то, что на спутнике полностью отсутствовала какая-либо научная аппаратура, изучение характера радиосигнала и оптические наблюдения за орбитой позволили получить важные научные данные.Характер изменений орбиты позволил произвести предварительную оценку величины плотности атмосферы на орбитальных высотах, её высокое значение (порядка 10 8 атомов/см³) стало для геофизиков большой неожиданностью. Результаты измерения плотности высоких слоёв атмосферы позволили создать теорию торможения спутников.

Спутник-2 - второй космический аппарат , запущенный на орбиту Земли 3 ноября 1957, впервые выведший в космос живое существо - собаку Лайку. Официально спутник был запущен в рамках Международного геофизического года. Спутник-2 представлял собой конической формы капсулу 4-метровой высоты, с диаметром основания 2 метра, содержал несколько отсеков для научной аппаратуры, радиопередатчик, систему телеметрии, программный модуль, систему регенерации и контроля температуры кабины. Собака Лайка размещалась в отдельном опечатанном отсеке. Еда и вода подавались собаке в виде желе. Вентилятор для охлаждения собаки начинал работать при температуре свыше 15 °C. На Спутнике-2 не было установлено телекамер (телевизионные изображения собак на Спутнике-5 часто принимают за изображения Лайки).

Собака Лайка.

Хрущёв, оценив политический успех запуска «Спутника-1», потребовал от ОКБ-1 к 40-й годовщине Октябрьской революции запустить ещё один спутник. Времени на разработку нового спутника тем самым было выделено очень мало и усовершенствовать существующие системы обеспечения жизнедеятельности за столь короткий срок не было возможности. Поэтому эксперимент с Лайкой получился очень коротким: из-за большой площади контейнер быстро перегрелся, и собака погибла уже на первых витках. Но в любом случае, источников электроэнергии для питания системы жизнеобеспечения хватало максимум на шесть суток и не были разработаны технологии безопасного спуска с орбиты.
Через 5-7 часов полёта физиологические данные более не передавались и начиная с четвёртого витка нельзя было получить никаких данных о состоянии собаки. Позднее исследования показали, что Лайка вероятно умерла от перегрева через 5-7 часов полёта. Но этого было достаточно, чтобы доказать что живой организм может выдерживать длительное пребывание в невесомости.

«Эксплорер-1» (Исследователь) - первый американский искусственный спутник Земли , запущенный 1 февраля 1958 года командой Вернера фон Брауна. Спутник «Эксплорер-1» прекратил радиопередачи 28 февраля 1958 года, находился на орбите до марта 1970 года.
Этому запуску предшествовала неудачная попытка ВМС США запустить спутник «Авангард-1», широко разрекламированный в связи с программой Международного Геофизического Года.
Фон Брауну по политическим причинам долго не давали разрешения на запуск первого американского спутника, поэтому подготовка к запуску «Эксплорера» началась всерьёз лишь после аварии «Авангарда».

Вернер фон Браун (второй справа) у полномасштабного макета Эксплорера с последней ступенью РН.

Для запуска была создана форсированная версия баллистической ракеты Редстоун, названная Юпитер-С, первоначально предназначавшаяся для испытания уменьшенных макетов боеголовок. Является прямым развитием немецкой ракеты Фау-2.
Для достижения орбитальной скорости использовалась связка из 15 твердотопливных ракет «Сержант», которые были, фактически, неуправляемыми реактивными снарядами с примерно 20 кг твёрдого топлива каждый; 11 ракет составляли вторую ступень, 3 - третью, и последняя - четвёртую. Двигатели второй и третьей ступени были смонтированы в двух вставленных друг в друга цилиндрах, а четвёртая устанавливалась сверху. Вся эта связка раскручивалась электромотором перед стартом. Это позволяло ей сохранять заданное положение продольной оси во время работы двигателей. Юпитер-С не имел четвёртой ступени, переделанная для запуска спутника ракета «задним числом» была названа Юнона-1.
Отработавшие двигатели 2-й и 3-й ступеней последовательно сбрасывались, но от 4-й ступени спутник не отделялся. Поэтому в различных источниках приводятся массы спутника, как с учётом пустой массы последней ступени, так и без неё. Без учёта этой ступени масса спутника была ровно в 10 раз меньше массы первого советского ИСЗ - 8,3 кг, из них масса аппаратуры 4,5 кг. Тем не менее, в состав её входили счётчик Гейгера и датчик метеорных частиц.
Орбита «Эксплорера» была заметно выше орбиты первого ИСЗ, и если в перигее счётчик Гейгера демонстрировал ожидаемое космическое излучение, которое было уже известно по запускам высотных ракет, то в апогее он вообще не давал сигнала. Джеймс Ван Аллен предположил, что в апогее счётчик входит в насыщение из-за нерасчётно высокого уровня облучения. Он рассчитал, что в этом месте могут находиться протоны солнечного ветра с энергиями 1-3 МэВ, захваченные магнитным полем Земли в своеобразную ловушку. Позднейшие данные подтвердили эту гипотезу, и радиационные пояса вокруг Земли называют поясами ван Аллена.

«Авангард-1» - спутник, запущенный в США 17 марта 1958 года по программе Международного Геофизического года. Спутник имел при запуске массу 1474 грамм, что было значительно меньше, чем масса советских ИСЗ и даже спутника «Эксплорер-1» (8,3 кг), уже запущенного полутора месяцами раньше. Хотя планировалось, что «Авангард» полетит ещё в 1957 году, авария ракеты (Авангард TV3) в момент попытки запуска нарушила эти планы, и спутник стал вторым американским аппаратом в космосе. Зато достаточно высокая орбита обеспечила ему гораздо более долгую жизнь. Он и сейчас находится на орбите, спустя 50 лет после запуска. Это самый старый искусственный объект, находящийся в околоземном космическом пространстве.

Спутник имеет форму шара с 6 стержнями антенн. Диаметр сферической оболочки - 16,3 см, питание аппаратуры спутника осуществлялось от ртутно-цинковых батарей, дополнительно, маломощный передатчик получал энергию от солнечных батарей.

Авангард-1.

Сложная судьба этого спутника была связана с соперничеством ракетных программ ВВС, ВМС и армии США, каждый из родов войск стремился разработать собственную ракету, программа «Авангард» относилась к флоту, программа «Эксплорер» - к армии. Ракета «Авангард», в отличие «Юпитер-С», запустившей «Эксплорер», была специально разработана как ракета для запуска ИСЗ. Она весила всего 10 тонн и остаётся самой миниатюрной из ракет-носителей с жидкостными двигателями. Конструкция ракеты была весьма противоречива, на первой ступени использовались керосин и жидкий кислород, на второй - азотная кислота и НДМГ. Кроме того, ракета заправлялась жидким пропаном (использовался для работы двигателя второй ступени и для ориентации) и концентрированной перекисью водорода (для турбонасоса подачи топлива первой ступени). Такая «мешанина» была обусловлена стремлением сократить финансовые и временные издержки и максимально использовать уже имевшееся «железо» геофизических ракет «Викинг» и «Аэроби». Ракета вышла не очень надёжной, менее половины пусков были удачными.
Кроме «Авангарда-1», на орбиту были выведены «Авангард-2» и «Авангард-3», они были заметно больше и тяжелее «родоначальника», хотя и оставались, по современной классификации, микроспутниками массой 10-20 кг. «Авангард-1» следует отнести к наноспутникам.
Несмотря на пренебрежительное отношение к «грейпфруту» (даже и в США), он помог совершить довольно серьёзные открытия, включая уточнение формы Земли.
«Эксплорер-3» - американский искусственный спутник Земли, запущенный 26 марта 1958 года командой Вернера фон Брауна. Аналогичен по конструкции и задачам первому американскому спутнику «Эксплорер-1». Второй успешный запуск в рамках программы «Эксплорер».В результате полёта Эксплорера-3 подтвердилось существование радиационного пояса Земли, открытого Джеймсом Ван Алленом.

Спутник-3 (объект Д) - советский искусственный спутник Земли, запущенный 15 мая 1958 с космодрома Байконур облегченной модификацией межконтинентальной баллистической ракеты Р-7, названной Спутник-3.
Первый запуск 27 апреля 1958 года закончился аварией ракеты-носителя.Объектом Д спутник назывался по порядковому номеру типа полезной нагрузки. Объектами А, Б, В, Г были разные виды ядерных боеголовок.
Спутник-3 был первым полноценным космическим аппаратом, обладающий всеми системами, присущими современным космическим аппаратам. Имея форму конуса с диаметром основания 1,73 метра и высотой 3,75 метра, спутник весил 1327 килограммов. На борту спутника было размещено 12 научных приборов. Последовательность их работы задавало программно-временное устройство. Впервые предполагалось применить бортовой магнитофон для записи телеметрии на тех участках орбиты, которые не были доступны наземным станциям слежения. Непосредственно перед стартом была обнаружена его неисправность, и спутник отправился в полет с неработающим магнитофоном.

Спутник - 3.

Впервые бортовая аппаратура принимала и исполняла команды, переданные с Земли. Впервые была использована активная система терморегулирования для поддержания рабочих температур. Электроэнергию обеспечивали одноразовые химические источники, в дополнение к которым для экспериментальной проверки впервые в СССР были использованы солнечные батареи, от которых работал небольшой радиомаяк. Его работа продолжалась и после того, как основные батареи исчерпали свой ресурс 3 июня 1958 года. Спутник пролетал до 6 апреля 1960 года.
С учётом опыта запуска третьего спутника в Королёвском КБ готовились к полёту 4, 5 и 6 спутники, в том числе спутник с индексом ОД. Ориентируемый аппарат, который не кувыркался на орбите, а был всегда соориентирован относительно касательной к орбите и мог возвращать на землю капсулу. Но сильная загрузка КБ военной тематикой и перенацеливание космической программы на освоение Луны не позволили продолжить работы по этим аппаратам. Эти идеи были реализованы в корабле «Восток» и спутнике «Зенит».

Авангард-2 - американский метеоспутник , спроектированный для измерения дневной облачности, и запущенный 17 февраля 1959 года с помощью ракеты-носителя «Авангард SLV 4» . «Авангард-2» стал первым в мире метеоспутником, выведенным на орбиту, однако его метеоданные оказались бесполезными.
Запуски спутников подобных Авангарду-2 начались ранее: 28 мая 1958 года был запущен «Vanguard 2B», 26 июня 1958 года - «Vanguard 2C», 26 сентября 1958 - «Vanguard 2D»; однако из-за отказов ракеты-носителя эти спутники не достигли орбиты.
Спутник «Авангард-2» представляет собой сферический корпус диаметром 50,8 см, с несколькими штыревыми антеннами.
На борту были установлены два телескопа, два фотоэлемента, два радиопередатчика (мощностью 1 Вт с несущей 108,03 МГц для телеметрии; мощностью 10 мВт с несущей 108 МГц для маяка), батарея гальванических элементов, радиоприемник команд для управления ленточным самописцем, и соответствующая электроника.

Первый в мире метеоспутник.

Передатчики телеметрии работали в течение 19 дней, но данные со спутника были неудовлетворительными из-за того, что спутник, неудачно отделившись от третей ступени, начал вращаться с большой угловой скоростью.
Масса спутника: 10,2 кг.
Авангард-3, или Авангард SLV-7 - американский спутник для изучения околоземного пространства. Последний спутник, запущенный по программе «Авангард».В ходе запуска 18 сентября 1959 года космический аппарат не смог отделиться от третьей ступени ракеты-носителя. Спутник передавал данные 84 дня, до 11 декабря 1959 года. По расчётам, Авангард-3 просуществует на орбите около трёхсот лет.


Запуск спутника Авангард-3.
«Эксплорер-4» - американский искусственный спутник Земли (ИСЗ), запущенный 26 июля 1958 года. Спутник предназначался для исследования радиационных поясов Земли и влияния ядерных взрывов на эти пояса.

Я поделился с Вами информацией, которую "накопал" и систематизировал. При этом ничуть не обеднел и готов делится дальше, не реже двух раз в неделю. Если Вы обнаружили в статье ошибки или неточности - пожалуйста сообщите.E-mail: [email protected]. Буду очень благодарен.