При равноускоренном прямолинейном движении проекция вектора перемещения. По какой формуле рассчитывается проекция перемещения тела при равноускоренном прямолинейном движении

Теперь мы должны выяснить самое главное - как изменяется координата тела при его прямолинейном равноускоренном движении. Для этого, как мы знаем, нужно знать перемещение тела, потому что проекция вектора перемещения как раз и равна изменению координаты.

Формулу для вычисления перемещения проще всего получить графическим методом.

При равноускоренном движении тела вдоль оси X скорость изменяется со временем согласно формуле v x = v 0х + a x t Так как время в эту формулу входит в первой степени, то график для проекции скорости в зависимости от времени представляет собой прямую, как это показано на рисунке 39. Прямая 1 на этом рисунке соответствует движению с положительной проекцией ускорения (скорость растет), прямая 2 - движению с отрицательной проекцией ускорения (скорость убывает). Оба графика относятся к случаю, когда в момент времени t = О тело имеет некоторую начальную скорость v 0 .

Перемещение выражается площадью. Выделим на графике скорости равноускоренного движения (рис. 40) маленький участок ab и опустим из точек а и Ь перпендикуляры на ось t. Длина отрезка cd на оси t в выбранном масштабе равна тому малому промежутку времени, за который скорость изменилась от ее значения в точке а до ее значения в точке Ь. Под участком ab графика получилась узкая полоска abсd.

Если промежуток времени, соответствующий отрезку cd, достаточно мал, то в течение этого малого времени скорость не может заметно измениться - движение в течение этого малого промежутка времени можно считать равномерным. Полоска abсd поэтому мало отличается от прямоугольника, а ее площадь численно равна проекции перемещения за время, соответствующее отрезку cd (см. § 7).

Но на такие узкие полоски можно разбить всю площадь фигуры, расположенной под графиком скорости. Следовательно, перемещение за все время t численно равно площади трапеции ОАВС. Площадь же трапеции, как известно из геометрии, равна произведению полусуммы ее оснований на высоту. В нашем случае длина одного из оснований численно равна v ox , другого-v x (см. рис. 40). Высота же трапеции численно равна t. Отсюда следует, что проекция s x перемещения выражается формулой

3с 15.09

Если проекция v ox начальной скорости равна нулю (в начальный момент времени тело покоилось!), то формула (1) принимает вид:

График скорости такого движения показан на рисунке 41.

При пользовании формулами (1) и (2) НУЖНО ПОМНИТЬ, ЧТО S x , V ox и v x могут быть как положительным», так и отрицательными - ведь это проекции векторов s, v o и v на ось X.

Таким образом, мы видим, что при равноускоренном движении перемещение растет со временем не так, как при равномерном движении: теперь в формулу входит квадрат времени. Это значит, что перемещение со временем растет быстрее, чем при равномерном движении.



Как зависит от времени координата тела? Теперь легко получить и формулу для вычисления координаты х в любой момент времени для тела, движущегося равноускоренно.

проекция s x вектора перемещения равна изменению координаты х-х 0 . Поэтому можно записать

Из формулы (3) видно, что, для того чтобы вычислить координату х в любой момент времени t, нужно знать начальную координату, начальную скорость и ускорение.

Формула (3) описывает прямолинейное равноускоренное движение, подобно тому как формула (2) § 6 описывает прямолинейное равномерное движение.

Другая формула для перемещения. Для вычисления перемещения можно получить и другую полезную формулу, в которую время не входит.

Из выражения v x = v 0x + a x t. получим выражение для времени

t = (v x - v 0x): a x и подставим его в формулу для перемещения s x , приведенную выше. Тогда получаем:

Эти формулы позволяют найти перемещение тела, если известны ускорение, а также начальная и конечная скорости движения. Если начальная скорость v o равна нулю, формулы (4) принимают вид:

Самое важное для нас - это уметь вычислять перемещение тела, потому что, зная перемещение, можно найти и координаты тела, а это и есть главная задача механики. Как же вычислить перемещение при равноускоренном движении?

Формулу для определения перемещения проще всего получить, если воспользоваться графическим методом.

В § 9 мы видели, что при прямолинейном равномерном движении перемещение тела численно равно площади фигуры (прямоугольника), расположенной под графиком скорости. Верно ли это для равноускоренного движения?

При равноускоренном движении тела, происходящем вдоль координатной оси X, скорость с течением времени не остается постоянной, а меняется со временем согласно формулам:

Поэтому графики скорости имеют вид, показанный на рисунке 40. Прямая 1 на этом рисунке соответствует движению с «положительным» ускорением (скорость растет), прямая 2 - движению с «отрицательным» ускорением (скорость убывает). Оба графика относятся к случаю, когда в момент времени тело имело скорость

Выделим на графике скорости равноускоренного движения маленький участок (рис. 41) и опустим из точек а и перпендикуляры на ось Длина отрезка на оси численно равна тому малому промежутку времени, за который скорость изменилась от ее значения в точке а до ее значения в точке Под участком графика получилась узкая полоска

Нели промежуток времени, численно равный отрезку достаточно мал, то в течение этого времени изменение скорости тоже мало. Движение в течение этого промежутка времени можно считать равномерным, и полоска будет тогда мало отличаться от прямоугольника. Площадь полоски поэтому численно равна перемещению тела за время, соответствующее отрезку

Но на такие узкие полоски можно разбить всю площадь фигуры, расположенной под графиком скорости. Следовательно, перемещение за все время численно равно площади трапеции Площадь же трапеции, как известно из геометрии, равна произведению полусуммы ее оснований на высоту. В нашем случае длина одного из оснований трапеции численно равна длина другого - V. Высота же ее численно равна Отсюда следует, что перемещение равно:

Подставим в эту формулу вместо выражение (1а), тогда

Разделив почленно числитель на знаменатель, получим:

Подставив в формулу (2) выражение (16), получим (см. рис. 42):

Формулу (2а) применяют в том случае, когда вектор ускорения направлен так же, как и ось координат, а формулу (26) тогда, когда направление вектора ускорения противоположно направлению этой оси.

Если начальная скорость равна нулю (рис. 43) и вектор ускорения направлен по оси координат, то из формулы (2а) следует, что

Если же направление вектора ускорения противоположно направлению оси координат, то из формулы (26) следует, что

(знак «-» здесь означает, что вектор перемещения, так же как и вектор ускорения, направлен противоположно выбранной оси координат).

Напомним, что в формулах (2а) и (26) величины и могут быть как положительными, так и отрицательными - это проекции векторов и

Теперь, когда мы получили формулы для вычисления перемещения, нам легко получить и формулу для вычисления координаты тела. Мы видели (см. § 8), что, для того чтобы найти координату тела в какой-то момент времени надо к начальной координате прибавить проекцию вектора перемещения тела на ось координат:

(За) если вектор ускорения направлен так же, как и ось координат, и

если направление вектора ускорения противоположно направлению оси координат.

Это и есть формулы, позволяющие находить положение тела в любой момент времени при прямолинейном равноускоренном движении. Для этого нужно знать начальную координату тела его начальную скорость и ускорение а.

Задача 1. Водитель автомобиля, движущегося со скоростью 72 км/ч, увидел красный сигнал светофора и нажал на тормоз. После этого автомобиль начал тормозить, двигаясь с ускорением

Какое расстояние пройдет автомобиль за время сек после начала торможения? Какое расстояние пройдет автомобиль до полной остановки?

Решение. За начало координат выберем ту точку дороги, в которой автомобиль начал тормозить. Координатную ось направим по направлению движения автомобиля (рис. 44), а начало отсчета времени отнесем к моменту, в который водитель нажал на тормоз. Скорость автомобиля направлена так же, как ось X, а ускорение автомобиля противоположно направлению этой оси. Поэтому проекция скорости на ось X положительна, а проекция ускорения отрицательна и координату автомобиля нужно находить по формуле (36):

Подставляя в эту формулу значения

Теперь найдем, какое расстояние пройдет автомобиль до полной остановки. Для этого нам нужно знать время движения . Его можно узнать, воспользовавшись формулой

Так как в тот момент, когда автомобиль останавливается, его скорость равна нулю, то

Расстояние, которое пройдет автомобиль до полной остановки, равно координате автомобиля в момент времени

Задача 2. Определите перемещение тела, график скорости которого показан на рисунке 45. Ускорение тела равно а.

Решение. Так как сначала модуль скорости тела уменьшается со временем, то вектор ускорения направлен противоположно направлению . Для вычисления перемещения мы можем воспользоваться формулой

Из графика видно, что и время движения поэтому:

Полученный ответ показывает, что график, изображенный на рисунке 45, соответствует движению тела сначала в одном направлении, а затем на такое же расстояние в противоположном направлении, в результате чего тело оказывается в исходной точке. Подобный график может, например, относиться к движению тела, брошенного вертикально вверх.

Задача 3. Тело движется вдоль прямой равноускоренно с ускорением а. Найдите разность расстояний, проходимых телом за два следующих один за другим одинаковых промежутка времени т.

Решение. Примем прямую, вдоль которой движется тело, за ось X. Если в точке А (рис. 46) скорость тела была равна то его перемещение за время равно:

В точке В тело имело скорость и его перемещение за следующий промежуток времени равно:

2. На рисунке 47 изображены графики скорости движения трех тел? Каков характер движения этих тел? Что можно сказать о скоростях движения тел в моменты времени, соответствующие точкам А и В? Определите ускорения и напишите уравнения движений (формулы для скорости и перемещения) этих тел.

3. Пользуясь приведенными на рисунке 48 графиками скоростей трех тел, выполните следующие задания: а) Определите ускорения этих тел; б) составьте для

каждого тела формулу зависимости скорости от времени: в) в чем сходны и чем различаются движения, соответствующие графикам 2 и 3?

4. На рисунке 49 показаны графики скорости движения трех тел. По этим графикам: а) определите, чему соответствуют отрезки ОА, ОВ и ОС на осях координат; 6) найдите ускорения, с которыми движутся тела: в) напишите уравнения движения для каждого тела.

5. Самолет при взлете проходит взлетную полосу за 15 сек и в момент отрыва от зедлли имеет скорость 100 м/сек. С каким ускорением двигался самолет и какова длина взлетной полосы?

6. Автомобиль остановился у светофора. После того как загорелся зеленый сигнал, он начинает двигаться с ускорением и движется гак до тех пор, пока скорость его не станет равной 16 м/сек, после чего он продолжает движение с постоянной скоростью. На каком расстоянии от светофора окажется автомобиль через 15 сек после появления зеленого сигнала?

7. Снаряд, скорость которого равна 1 000 м/сек, пробивает стену блиндажа за и после этого имеет скорость 200 м/сек. Считая движение снаряда в толще стены равноускоренным, найдите толщину стены.

8. Ракета движется с ускорением и к некоторому моменту времени достигает скорости в 900 м/сек. Какой путь она пройдет в следующие

9. На каком расстоянии от Земли оказался бы космический корабль через 30 мин после старта, если бы он все время двигался прямолинейно с ускорением

Траектория (от позднелатинского trajectories – относящийся к перемещению) – это линия, по которой движется тело (материальная точка). Траектория движения может быть прямой (тело перемещается в одном направлении) и криволинейной, то есть механическое движение может быть прямолинейным и криволинейным.

Траектория прямолинейного движения в данной системе координат – это прямая линия. Например, можно считать, что траектория движения автомобиля по ровной дороге без поворотов является прямолинейной.

Криволинейное движение – это движение тел по окружности, эллипсу, параболе или гиперболе. Пример криволинейного движения – движение точки на колесе движущегося автомобиля или движение автомобиля в повороте.

Движение может быть сложным. Например, траектория движения тела в начале пути может быть прямолинейной, затем криволинейной. Например, автомобиль в начале пути движется по прямой дороге, а затем дорога начинает «петлять» и автомобиль начинает криволинейное движение.

Путь

Путь – это длина траектории. Путь является скалярной величиной и в международной системе единиц СИ измеряется в метрах (м). Расчёт пути выполняется во многих задачах по физике. Некоторые примеры будут рассмотрены далее в этом учебнике.

Вектор перемещения

Вектор перемещения (или просто перемещение ) – это направленный отрезок прямой, соединяющий начальное положение тела с его последующим положением (рис. 1.1). Перемещение – величина векторная. Вектор перемещения направлен от начальной точки движения к конечной.

Модуль вектора перемещения (то есть длина отрезка, который соединяет начальную и конечную точки движения) может быть равен пройденному пути или быть меньше пройденного пути. Но никогда модуль вектора перемещения не может быть больше пройденного пути.

Модуль вектора перемещения равен пройденному пути, когда путь совпадает с траекторией (см. разделы и ), например, если из точки А в точку Б автомобиль перемещается по прямой дороге. Модуль вектора перемещения меньше пройденного пути, когда материальная точка движется по криволинейной траектории (рис. 1.1).

Рис. 1.1. Вектор перемещения и пройденный путь.

На рис. 1.1:

Ещё пример. Если автомобиль проедет по кругу один раз, то получится, что точка начала движения совпадёт с точкой конца движения и тогда вектор перемещения будет равен нулю, а пройденный путь будет равен длине окружности. Таким образом, путь и перемещение – это два разных понятия .

Правило сложения векторов

Векторы перемещений складываются геометрически по правилу сложения векторов (правило треугольника или правило параллелограмма, см. рис. 1.2).

Рис. 1.2. Сложение векторов перемещений.

На рис 1.2 показаны правила сложения векторов S1 и S2:

а) Сложение по правилу треугольника
б) Сложение по правилу параллелограмма

Проекции вектора перемещения

При решении задач по физике часто используют проекции вектора перемещения на координатные оси. Проекции вектора перемещения на координатные оси могут быть выражены через разности координат его конца и начала. Например, если материальная точка переместилась из точки А в точку В, то при этом вектор перемещения (см.рис. 1.3).

Выберем ось ОХ так, чтобы вектор лежал с этой осью в одной плоскости. Опустим перпендикуляры из точек А и В (из начальной и конечной точек вектора перемещения) до пересечения с осью ОХ. Таким образом мы получим проекции точек А и В на ось Х. Обозначим проекции точек А и В соответственно А x и В x . Длина отрезка А x В x на оси ОХ – это и есть проекция вектора перемещения на ось ОХ, то есть

S x = A x B x

ВАЖНО!
Напоминаю для тех, кто не очень хорошо знает математику: не путайте вектор с проекцией вектора на какую-либо ось (например, S x). Вектор всегда обозначается буквой или несколькими буквами, над которыми находится стрелка. В некоторых электронных документах стрелку не ставят, так как это может вызвать затруднения при создании электронного документа. В таких случаях ориентируйтесь на содержание статьи, где рядом с буквой может быть написано слово «вектор» или каким-либо другим способом вам указывают на то, что это именно вектор, а не просто отрезок.

Рис. 1.3. Проекция вектора перемещения.

Проекция вектора перемещения на ось ОХ равна разности координат конца и начала вектора, то есть

S x = x – x 0

Аналогично определяются и записываются проекции вектора перемещения на оси OY и OZ:

S y = y – y 0 S z = z – z 0

Здесь x 0 , y 0 , z 0 — начальные координаты, или координаты начального положения тела (материальной точки); x, y, z — конечные координаты, или координаты последующего положения тела (материальной точки).

Проекция вектора перемещения считается положительной, если направление вектора и направление координатной оси совпадают (как на рис 1.3). Если направление вектора и направление координатной оси не совпадают (противоположны), то проекция вектора отрицательна (рис. 1.4).

Если вектор перемещения параллелен оси, то модуль его проекции равен модулю самого Вектора. Если вектор перемещения перпендикулярен оси, то модуль его проекции равен нулю (рис. 1.4).

Рис. 1.4. Модули проекции вектора перемещения.

Разность между последующим и начальным значениями какой-нибудь величины называется изменением этой величины. То есть проекция вектора перемещения на координатную ось равна изменению соответствующей координаты. Например, для случая, когда тело перемещается перпендикулярно оси Х (рис. 1.4) получается, что относительно оси Х тело НЕ ПЕРЕМЕЩАЕТСЯ. То есть перемещение тела по оси Х равно нулю.

Рассмотрим пример движения тела на плоскости. Начальное положение тела – точка А с координатами х 0 и у 0 , то есть А(х 0 , у 0). Конечное положение тела – точка В с координатами х и у, то есть В(х, у). Найдём модуль перемещения тела.

Из точек А и В опустим перпендикуляры на оси координат ОХ и OY (рис. 1.5).

Рис. 1.5. Движение тела на плоскости.

Определим проекции вектора перемещения на осях ОХ и OY:

S x = x – x 0 S y = y – y 0

На рис. 1.5 видно, что треугольник АВС – прямоугольный. Из этого следует, что при решении задачи может использоваться теорема Пифагора , с помощью которой можно найти модуль вектора перемещения, так как

АС = s x CB = s y

По теореме Пифагора

S 2 = S x 2 + S y 2

Откуда можно найти модуль вектора перемещения, то есть длину пути тела из точки А в точку В:

Ну и напоследок предлагаю вам закрепить полученные знания и рассчитать несколько примеров на ваше усмотрение. Для этого введите какие-либо цифры в поля координат и нажмите кнопку РАССЧИТАТЬ. Ваш браузер должен поддерживать выполнение сценариев (скриптов) JavaScript и выполнение сценариев должно быть разрешено в настройках вашего браузера, иначе расчет не будет выполнен. В вещественных числах целая и дробная части должны разделяться точкой, например, 10.5.

Попытаемся вывести формулу для нахождения проекции вектора перемещения тела, которое двигается прямолинейно и равноускоренно, за любой промежуток времени.

Для этого обратимся к графику зависимости проекции скорости прямолинейного равноускоренного движения от времени.

График зависимости проекции скорости прямолинейного равноускоренного движения от времени

Ниже на рисунке представлен график, для проекции скорости некоторого тела, которое движется с начальной скорость V0 и постоянным ускорением а.

Если бы у нас было равномерное прямолинейное движение, то для вычисления проекции вектора перемещения, необходимо было бы посчитать площадь фигуры под графиком проекции вектора скорости.

Теперь докажем, что и в случае равноускоренного прямолинейного движения проекция вектора перемещения Sx будет определяться таким же образом. То есть проекция вектора перемещения будет равняться площади фигуры под графиком проекции вектора скорости.

Найдем площадь фигуры ограниченную осью оt, отрезками АО и ВС, а также отрезком АС.

Выделим на оси ot малый промежуток времени db. Проведем через эти точки перпендикуляры к оси времени, до их пересечения с графикос проекции скорости. Отметим точки пересечения a и c. За этот промежуток времени скорость тела поменяется от Vax до Vbx.

Если взять этот промежуток достаточно малым, то можно считать что скорость остается практически неизменной, а следовательно мы будем иметь на этом промежутке дело с равномерным прямолинейным движением .

Тогда можно считать отрезок ac горизонтальным, а abcd – прямоугольником. Площадь abcd будет численно равна проекции вектора перемещения, за промежуток времени db. Мы можем разбить на такие малые промежутки времени всю площадь фигуры OACB.

То есть мы получили, что проекция вектора перемещения Sx за промежуток времени, соответствующий отрезку ОВ, будет численно равна площади S трапеции ОACB, и будет определяться по той же формуле, что и эта площадь.

Следовательно,

  • S=((V0x+Vx)/2)*t.

Так как Vx=V0x+ax*t и S=Sx, полученная формула примет следующий вид:

  • Sx=V0x*t+(ax*t^2)/2.

Мы получили формулу, с помощью которой можем рассчитать проекцию вектора перемещения при равноускоренном движении.

В случае равнозамедленного движения формула примет следующий вид.

Равномерное прямолинейное движение – это частный случай неравномерного движения.

Неравномерное движение – это движение, при котором тело (материальная точка) за равные промежутки времени совершает неодинаковые перемещения. Например, городской автобус движется неравномерно, так как его движение состоит в основном из разгонов и торможений.

Равнопеременное движение – это движение, при котором скорость тела (материальной точки) за любые равные промежутки времени изменяется одинаково.

Ускорение тела при равнопеременном движении остаётся постоянным по модулю и по направлению (a = const).

Равнопеременное движение может быть равноускоренным или равнозамедленным.

Равноускоренное движение – это движение тела (материальной точки) с положительным ускорением, то есть при таком движении тело разгоняется с неизменным ускорением. В случае равноускоренного движения модуль скорости тела с течением времени возрастает, направление ускорения совпадает с направлением скорости движения.

Равнозамедленное движение – это движение тела (материальной точки) с отрицательным ускорением, то есть при таком движении тело равномерно замедляется. При равнозамедленном движении векторы скорости и ускорения противоположны, а модуль скорости с течением времени уменьшается.

В механике любое прямолинейное движение является ускоренным, поэтому замедленное движение отличается от ускоренного лишь знаком проекции вектора ускорения на выбранную ось системы координат.

Средняя скорость переменного движения определяется путём деления перемещения тела на время, в течение которого это перемещение было совершено. Единица измерения средней скорости – м/с.

V cp = s / t

– это скорость тела (материальной точки) в данный момент времени или в данной точке траектории, то есть предел, к которому стремится средняя скорость при бесконечном уменьшении промежутка времени Δt:

Вектор мгновенной скорости равнопеременного движения можно найти как первую производную от вектора перемещения по времени:

Проекция вектора скорости на ось ОХ:

V x = x’

это производная от координаты по времени (аналогично получают проекции вектора скорости на другие координатные оси).

– это величина, которая определяет быстроту изменения скорости тела, то есть предел, к которому стремится изменение скорости при бесконечном уменьшении промежутка времени Δt:

Вектор ускорения равнопеременного движения можно найти как первую производную от вектора скорости по времени или как вторую производную от вектора перемещения по времени:

Если тело движется прямолинейно вдоль оси ОХ прямолинейной декартовой системы координат, совпадающей по направлению с траекторией тела, то проекция вектора скорости на эту ось определяется формулой:

V x = v 0x ± a x t

Знак «-» (минус) перед проекцией вектора ускорения относится к равнозамедленному движению. Аналогично записываются уравнения проекций вектора скорости на другие оси координат.

Так как при равнопеременном движении ускорение является постоянным (a = const), то график ускорения – это прямая, параллельная оси 0t (оси времени, рис. 1.15).

Рис. 1.15. Зависимость ускорения тела от времени.

Зависимость скорости от времени – это линейная функция, графиком которой является прямая линия (рис. 1.16).

Рис. 1.16. Зависимость скорости тела от времени.

График зависимости скорости от времени (рис. 1.16) показывает, что

При этом перемещение численно равно площади фигуры 0abc (рис. 1.16).

Площадь трапеции равна произведению полусуммы длин её оснований на высоту. Основания трапеции 0abc численно равны:

0a = v 0 bc = v

Высота трапеции равна t. Таким образом, площадь трапеции, а значит, и проекция перемещения на ось ОХ равна:

В случае равнозамедленного движения проекция ускорения отрицательна и в формуле для проекции перемещения перед ускорением ставится знак «–» (минус).

График зависимости скорости тела от времени при различных ускорениях показан на рис. 1.17. График зависимости перемещения от времени при v0 = 0 показан на рис. 1.18.

Рис. 1.17. Зависимость скорости тела от времени для различных значений ускорения.

Рис. 1.18. Зависимость перемещения тела от времени.

Скорость тела в данный момент времени t 1 равна тангенсу угла наклона между касательной к графику и осью времени v = tg α, а перемещение определяют по формуле:

Если время движения тела неизвестно, можно использовать другую формулу перемещения, решая систему из двух уравнений:

Поможет нам вывести формулу для проекции перемещения:

Так как координата тела в любой момент времени определяется суммой начальной координаты и проекции перемещения, то будет выглядеть следующим образом:

Графиком координаты x(t) также является парабола (как и график перемещения), но вершина параболы в общем случае не совпадает с началом координат. При а x < 0 и х 0 = 0 ветви параболы направлены вниз (рис. 1.18).