Термодинамическая температура. Термодинамическая шкала температур Какая шкала температур используется в термодинамике

Термодинами́ческая Температу́рная шкала́ (Кельвина шкала), абсолютная шкала температур, не зависящая от свойств термометрического вещества (начало отсчета - абсолютный нуль температуры). Построение термодинамической температурной шкалы основано на втором начале термодинамики и, в частности, на независимости кпд Карно цикла от природы рабочего тела. Единица термодинамической температуры - кельвин (К)

Статистический вес и энтропия.

Энтропия - в естественных науках мера неупорядоченности системы, состоящей из многих элементов. В частности, в статистической физике - мера вероятности осуществления какого-либо макроскопического состояния.

Где - приращение энтропии; - минимальная теплота, подведённая системе; - абсолютная температура процесса.

Статистический вес в термодинамике и статистической физике - число способов, которыми может быть реализовано данное макроскопическое состояние системы. Статистический вес связан с энтропией S системы соотношением Больцмана ,

Где k = R/N = 1,38*10 -23 Дж/К

где k - фундаментальная мировая постоянная Больцмана;
R = 8,31 Дж/(моль*К) - молярная газовая постоянная;
N = 6,06*10 23 моль -1 - число Авогадро;
Р - статистический вес: число способов осуществления данного состояния.

Параметр S - энтропия - служит мерой рассеяния энергии Вселенной, а Р - характеризует любые самопроизвольные изменения, эта величина относится к миру атомов, определяющих скрытый механизм изменения.

Билет

Равновесное состояние. Диаграммы состояний. Уравнение состояния. Уравнение состояния разреженных газов. Идеальный газ. Уравнение состояния не разреженных газов (уравнение Ван-дер-Ваальса)

Равновесное состояние - состояние системы, при котором остаются неизменными по времени макроскопические величины этой системы (температура, давление, объём, энтропия) в условиях изолированности от окружающей среды. В общем, эти величины не являются постоянными, они лишь флуктуируют (колеблются) возле своих средних значений. Если равновесной системе соответствует несколько состояний, в каждом из которых система может находиться неопределенно долго, то о системе говорят, что она находится в метастабильном равновесии. В состоянии равновесия в системе отсутствуют потоки материи или энергии, неравновесные потенциалы (или движущие силы), изменения количества присутствующих фаз. Отличают тепловое, механическое, радиационное (лучистое) и химическое равновесия.



1)равновесие достигается в какой-либо части (или частях) относительно большой по размерам системы - локальное равновесие,

2)неполное равновесие достигается вследствие разности скоростей релаксационных процессов, протекающих в системе - частичное равновесие,

3)имеют место как локальное, так и частичное равновесие.

В неравновесных системах происходят изменения потоков материи или энергии, или, например, фаз.

Диаграммы состояний.

диаграмма равновесия, фазовая диаграмма, графическое изображение равновесных фазовых состояний одно- или многокомпонентных систем при разных значениях параметров, определяющих эти состояния. Диаграммы состояния изображают фазовый состав системы при разных концентрациях компонентов (Х), температурах (Т) и давлении (Р).

Диаграммы являются пространственными. Мерность пространства зависит от числа независимых переменных, функцией которых является фазовый состав. Диаграмма состояния может быть двумерной, трехмерной и многомерной. Переменные (Р, Т, Х) являются координатами, в которых строится диаграмма. Каждая точка диаграммы состояния (фигуративная точка) указывает на фазовый состав вещества при заданных значениях термодинамических параметров (координат этой точки). Когда система состоит только из одного компонента, диаграмма состояния представляет собой трехмерную пространственную фигуру, построенную в трех прямоугольных координатных осях, по которым откладывают температуру (Т), давление (Р) и мольный объем (v). На практике часто применяют проекцию диаграммы состояния на одну из координатных плоскостей, обычно на плоскость Р - Т.

Разреженные газы.

Разреженным в физике называют такое состояние газа, при котором средняя длина свободного пробега молекул превышает линейные размеры сосуда, содержащего газ. Это состояние называют также вакуумом. Поведение разреженных газов отличается целым рядом особенностей. Поскольку в вакууме молекулы газа пробегают расстояние от одной стенки до другой без столкновений, то не существует давления одной части газа на другую; можно говорить лишь о давлении газа на стенки сосуда. В разреженных газах не существует внутреннего трения и явления теплопроводности в обычном смысле. Физический вакуум при комнатных температурах реализуется в газах при давлении менее 10 -5 мм рт. ст., если газ находится в объеме с линейными размерами порядка метра.
В технике под вакуумом понимают состояние газа при давлении ниже атмосферного. Степень технического вакуума оценивается величиной давления остаточного газа.

Идеальный газ.

Идеальный газ - математическая модель газа, в которой предполагается, что:

1) потенциальной энергией взаимодействия молекул можно пренебречь по сравнению с их кинетической энергией;

2) суммарный объём молекул газа пренебрежимо мал;

3) между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги;

4) время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями.

В расширенной модели идеального газа частицы, из которого он состоит, имеют форму упругих сфер или эллипсоидов, что позволяет учитывать энергию не только поступательного, но и вращательно-колебательного движения, а также не только центральные, но и нецентральные столкновения частиц.

Уравнение состояния идеального газа(уравнение Клайперона)

Уравнение состояния не разреженных газов (уравнение Ван-дер-Ваальса ) ,

Билет.

Механическая форма передачи энергии телу. Работа. Тепловая форма передачи энергии телу. Теплота. Первое начало термодинамики. Равновесно совершемая работа, равновесно подводимая теплота

Доказанная в предыдущем параграфе теорема о независимости к. п. д. обратимых машин от свойств рабочего вещества позволяет установить температурную шкалу, не зависящую от выбора термометрического тела.

В соответствии с указанной теоремой величина

а следовательно, и отношение для цикла Карно, зависят только от температур нагревателя и холодильника. Обозначив величины этих температур по некоторой, пока не известной нам шкале через и можно написать, что

где универсальная (т. е. одинаковая для всех циклов Карно) функция температур нагревателя и холодильника. Соотношение (106.1) дает возможность определять температуру тел через количества тепла, получаемые и отдаваемые при циклах Карно. Докажем, что функция (106.1) обладает следующим свойством:

(106.2)

где есть опять-таки универсальная функция температуры. Рассмотрим две обратимые машины (рис. 106.1), холодильник одной из которых служит одновременно нагревателем для другой. Предположим, что вторая машина отбирает от резервуара с температурой Ф такое же количество тепла, какое отдает ему первая машина.

Для машины . Следовательно, соотношение (106.1) для этой машины имеет вид

Для машины Поэтому согласно (106.1)

(106.4)

Рассматривая машины а также резервуар с температурой как единую обратимую машину, получающую тепло Q, от нагревателя с температурой 08 и отдающую тепло холодильнику с температурой можно написать:

(106.5)

Разделив (106.5) на (106.3), получим, что

Сравнение этого выражения с (106.4) приводит к соотношению

Это соотношение связывает температуры и двух тел, причем в нем фигурирует температура -6а третьего тела. Условившись раз и навсегда о выборе этого тела, т. е. сделав неизменной, мы сведем функцию , стоящую в числителе и знаменателе формулы (106.6), к функции одной переменной . Обозначив эту функцию через мы придем к формуле (106.2).

Функция зависит только от температуры. Поэтому ее значения можно использовать для характеристики температуры соответствующего тела, т. е. полагать температуру тела равной 0, где Тогда выражение (106.1) примет следующий вид:

Соотношение (106.7) положено в основу так называемой термодинамической шкалы температур. Преимущество этой шкалы заключается в том, что она не зависит от выбора тела (рабочего вещества в цикле Карно), используемого для измерения температуры.

В соответствии с (106.7) для сопоставления температур двух тел нужно осуществить цикл Карно, используя эти тела в качестве нагревателя и холодильника. Отношение количества тепла, отданного телу - «холодильнику», к количеству тепла, отобранного от тела - «нагревателя», даст отношение температур рассматриваемых тел. Для однозначного ределения численного значения 0 необходимо условиться о выборе единицы температуры, т. е. градуса. За абсолютный градус принимается одна сотая разности температур кипящей при атмосферном давлении воды и тающего льда. Таким образом, градус абсолютной термодинамической шкалы равен градусу идеальной газовой шкалы.

Легко установить, что термодинамическая шкала температур совпадает с идеальной газовой шкалой. Действительно, в соответствии с (105.3)

Сопоставляя (106.7) с (106.8), получим, что

Следовательно, 0 пропорциональна Т и, поскольку градус обеих шкал одинаков,

Теорема Карно позволяет построить температурную шкалу, совершенно не зависящую от индивидуальных особенностей термометрического вещества и устройства термометра. Эта шкала температур предложена У. Томсоном (лордом Кельвином) в 1848 г. Она строится следующим образом. Пусть t 1 и t 2 температуры нагревателя и холодильника, измеренные каким-либо термометром. Тогда, согласно теореме Карно, КПД цикла Карно

где f (t 1 ,t 2) – универсальная функция выбранных эмпирических температур t 1 и t 2 . Ее вид совершенно не зависит от конкретного устройства машины Карно и от рода используемого рабочего вещества. В дальнейшем нам удобнее будет рассматривать более простую универсальную функцию температур

Эта функция легко выражается через f (t 1 ,t 2). Чтобы определить общий вид функции j(t 1 ,t 2), рассмотрим три тепловых резервуара, температуры которых поддерживаются постоянными. Эмпирические температуры этих резервуаров обозначим t 1 , t 2 , t 3 соответственно. Используя их в качестве нагревателей и холодильников, проведем три цикла Карно (a-b-c-d , d-c-e-f , a-b-e-f ), изображенные на рис. 11.1.

При этом температуры на изотермах a-b , d-c , f-e равны t 1 , t 2 , t 3 , а абсолютные значения полученных на изотермах теплот равны Q 1 , Q 2 , Q 3 соответственно. Для циклов a-b-c-d и d-c-e-f можно написать

Исключая отсюда Q 2 , получим

.

Объединенные вместе, эти два цикла эквивалентны одному циклу Карно a-b-e-f , т.к. изотерма c-d проходится дважды в противоположных направлениях, и ее можно исключить из рассмотрения. Следовательно,

Сравнивая это выражение с предыдущим, получим

Так как правая часть не зависит от t 2 , то данное соотношение может выполняться при любых значениях аргументов t 1 , t 2 , t 3 только если функция j(t 1 ,t 2) имеет вид

.

Таким образом, j(t 1 ,t 2) представляет собой отношение значений одной и той же функции Q(t ) при t = t 1 и t = t 2 . Так как величина Q(t ) зависит только от температуры, она сама может быть принята за меру температуры тела. Величина Q называется абсолютной термодинамической температурой. Отношение двух термодинамических температур Q 1 и Q 2 определяется соотношением

Тогда КПД цикла Карно может быть записан в виде

. (11.2)

Сравнивая выражение (11.2) с КПД цикла Карно для идеального газа (8.2) можно убедиться, что отношения термодинамических и идеально-газовых температур тепловых резервуаров в цикле Карно совпадают.

Отношение Q 1 /Q 2 в принципе может быть найдено экспериментально. Для этого надо измерить абсолютные значения теплот Q 1 и Q 2 , которые получает рабочее тело в цикле Карно от тепловых резервуаров с температурами Q 1 и Q 2 . Однако значением этого отношения сами температуры Q 1 и Q 2 еще не определяются однозначно.

Для однозначного определения абсолютной термодинамической температуры следует приписать какой-либо температурной точке определенное значение Q, а затем с помощью соотношения (11.1) вычислять температуру любого другого тела. Исходя из точности, с которой удается воспроизводить те или иные характерные температуры, в качестве основной реперной точки была выбрана тройная точка воды, т.е. температура, при которой в равновесии находятся лед, вода и водяной пар (давление при этом Р тр = 4,58 мм. рт. ст.). Этой температуре приписано значение Т тр = 273,16 К точно. Такая величина реперной температуры выбрана для того, чтобы обеспечить совпадение термодинамической температуры с идеально-газовой в пределах применимости последней.

Построенная температурная шкала называется абсолютной термодинамической шкалой температур (шкалой Кельвина).

Машина Карно позволяет лишь принципиально построить температурную шкалу. Для практических измерений температуры она непригодна. Однако многочисленные следствия второго начала термодинамики и теоремы Карно позволяют найти поправки к показаниям реальных термометров, приводящие эти показания к абсолютной термодинамической шкале. Для этой цели можно использовать любое точное термодинамическое соотношение, в которое помимо температуры Т входят только экспериментально измеримые величины.

Абсолютный нуль. Термодинамическая шкала

температур. Абсолютная температура.

Основное уравнение кинетической теории газов

Мы знаем, что давление газа пропорционально концентрации молекул р~n. Зависит от кинетической энергии:

ν- это средняя скорость молекул. Объединим полученные соотношенияр~n*(mν 2 /2). Переходя к равенству, необходимо ввести коэффициент пропорциональности с

Р=сn(mν 2 /2)

Применив строгий вывод, можно доказать, что с= 2/3

Основное уравнение молекулярно-кинетической теории: р=(2/3)n(mν 2 /2)

Р=(2/3)nЕ пос

Е пос - кинетическая энергия поступательного движения. Температура, при которой должно прекратиться поступательное движение молекул, называется абсолютным нулём.

Абсолютный нуль -t=-273,15 0 С. В международной системе единиц принято термодинамическая шкала температур. За начало отсчёта – абсолютный нуль. Это самое возможное из низких температур, поэтому на термодинамической шкале нет отрицательных температур. Эту шкалу называют шкалой Кельвина. В повседневной жизни мы используем шкалу Цельсия. За нулевую точку принята температура таяния льда. За вторую опорную точку термодинамической шкалы принята температура, при которой вода находится одновременно в трёх состояниях (твёрдом, жидком, газообразном). Это состояние получило название тройной точкой: по Цельсию это 0,01 0 С, а по термодинамической шкале 273,16 единиц (1единица называется кельвином). Такой выбор сделан, чтобы

Температуру, отсчитываемую по термодинамической шкале называют абсолютной температурой.

Т=(273,15+t)К t=(Т-273,15) 0 С
Уравнение кинетической энергии газов.

Связь температуры тела со скоростью движения его

частиц. р~n р~Т

Объединим обе эти экспериментально обнаруженные закономерности

р=knТ - Это соотношение является математическим выражением

результатов исследований. С другой стороны мы знаем: р=(2/3)×n×(m 0 ν 2)/2

knТ=(2/3)×n×(m 0 ν 2 /2),

Т=(1/k)×(2/3)×(m 0 ν 2 /2),

Т=(2/3)×(Е/k).

Температурой называют скалярную физическую величину, характеризующую интенсивность теплового движения молекул изолированной системы в условиях термодинамического равновесия, пропорционально средней кинетической энергии поступательного движения молекул.

Т=(1/k)(2/3)(m 0 ν 2 /2)

k в формуле называется постоянной Больцмана (в честь австрийского ученого М.Больцмана)

k=(2/3)(m 0 ×v 2)/T

Числитель – энергетическая температура в Джоулях;

Знаменатель – соответствующая температура в Кельвинах.

Следовательно: постоянная Больцмана равна отношению температуры в единицах энергии к той же температуре, выраженной в Кельвинах. k=1,380662×10 -23 Дж×К -1 .


ЧО 2 Уравнение Менделеева - Клапейрона

Частные случаи

В физике, как и в других науках, происходит со временем удивительный процесс. Многое из того, что сейчас можно уловить кратко и ясно, несколько десятилетий (веков) назад появились как новые истины, с большим трудом воспринимавшихся современниками. Со временем опыт человека заставляет принять новые идеи и привыкнуть к ним, а, привыкнув, человек начинает использовать их в практической деятельности как понятия и порой даже тривиальные. Примерно так же дело обстояло и с изучением газа. Древние учения считали газ неуловимой формой тела, представляющей собой нечто среднее между веществом и духом. Но такой взгляд существовал до тех пор, пока не потребовалось описание явления. Количественные характеристики и постановка эксперимента в XVII веке Торричелли и Паскаля показали, что воздух имеет вес. С этих пор физики начали изучать свойства газов. Новые взгляды потрясли физиков не меньше, чем открытия XX века.

Термодинамические параметры газа : Макроскопические параметры газа (давление, объем, температура и т.д.) называются термодинамическими параметрами газа. Если взять определенную массу m, то при постоянных P, V и T газ будет находиться в равновесном состоянии. Когда происходит изменение этих параметров, то в газе происходит тот или иной процесс, который называется термодинамическим. Соотношение между значениями тех или иных параметров в начале и конце процесса называется газовым законом. Газовый закон выражающий связь между всеми тремя параметрами газа, называется объединенным газовым законом.

Возьмем закрытый сосуд с газом, и будем нагревать его, первоначально поместив в тающий лед. Температуру газа t определим с помощью термометра, а давление p манометром. С увеличением температуры газа его давление будет возрастать. Такую зависимость нашел французский физик Шарль. График зависимости p от t, построенный на основании такого опыта, имеет вид прямой линии.

Если продолжить график в область низких давлений, можно определить некоторую «гипотетическую» температуру, при которой давление газа стало бы равным нулю. Опыт показывает, что эта температура равна –273,15 °С и не зависит от свойств газа. Невозможно на опыте получить путем охлаждения газ в состоянии с нулевым давлением, так как при очень низких температурах все газы переходят в жидкие или твердые состояния. Давление идеального газа определяется ударами хаотически движущихся молекул о стенки сосуда. Значит, уменьшение давления при охлаждении газа объясняется уменьшением средней энергии поступательного движения молекул газа Е; давление газа будет равно нулю, когда станет равна нулю энергия поступательного движения молекул.

Английский физик У. Кельвин (Томсон) выдвинул идею о том, что полученное значение абсолютного нуля соответствует прекращению поступательного движения молекул всех веществ. Температуры ниже абсолютного нуля в природе быть не может. Это предельная температура при которой давление идеального газа равно нулю.

Температуру, при которой должно прекратиться поступательное движение молекул, называют абсолютным нулем (илинулем Кельвина).

Кельвин в 1848 г. предложил использовать точку нулевого давления газа для построения новой температурной шкалы – термодинамической шкалы температур (шкала Кельвина ). За начало отсчета по этой шкале принята температура абсолютного нуля.

В системе СИ принято единицу измерения температуры по шкале Кельвина называть кельвином и обозначать буквой К.

Размер градуса кельвина определяют так, чтобы он совпадал с градусом Цельсия, т.е 1К соответствует 1ºС.

Температура, отсчитанная по термодинамической шкале температур, обозначается Т. Её называют абсолютной температурой или термодинамической температурой .

Температурная шкала Кельвина называется абсолютной шкалой температур . Она оказывается наиболее удобной при построении физических теорий.

Кроме точки нулевого давления газа, которая называется абсолютным нулем температуры , достаточно принять еще одну фиксированную опорную точку. В шкале Кельвина в качестве такой точки используется температура тройной точки воды (0,01 °С), в которой в тепловом равновесии находятся все три фазы – лед, вода и пар. По шкале Кельвина температура тройной точки принимается равной 273,16 К.



Связь между абсолютной температурой и температурой по шкале Цельсия выражается формулой Т = 273,16 + t , где t – температура в градусах Цельсия.

Чаще пользуются приближенной формулой Т = 273 + t и t = Т – 273

Абсолютная температура не может быть отрицательной.

2. Электромагнитное поле и электромагнитные волны. Скорость электромагнитных волн.

1. Переменное магнитное поле создает вихревое электрическое поле.

2. Переменное электрическое поле создает вихревое магнитное поле.

Электромагнитное поле

Это особая форма материи - совокупность электрических и магнитных полей.

Переменные электрические и магнитные поля существуют одновременно и образуют единое электромагнитное ноле.