Развитие коры головного мозга. Кора головного мозга: функции и особенности строения Физиология коры больших полушарий

РАЗВИТИЕ КОРЫ ГОЛОВНОГО МОЗГА

(англ. development of cerebral cortex ) как филогенетически нового образования происходит в течение длительного периода онтогенеза . В различных областях и полях коры изменения ее ширины, размеров и уровней дифференцировки нейронов всех типов происходит в разные сроки (гетерохронно) и с различной интенсивностью. Наиболее поздно достигают полной дифференцировки ассоциативные области. Вместе с тем, несмотря на гетерохронию морфогенеза, в определенные возрастные периоды Р. к. г. м. дифференцировка нервных элементов в различных областях происходит синхронно (см. , , , ).

К моменту рождения ребенка кора имеет то же многослойное строение, что и у взрослых. Однако ширина корковых слоев и подслоев значительно увеличивается с возрастом. Наиболее существенные изменения претерпевает цито- и фиброархитектоника коры. В период новорожденности нейроны отличаются небольшими размерами, слабым развитием дендритов и аксонов. Модульная организация нейронов представлена вертикальными колонками. В течение первых лет жизни происходит интенсивная дифференциация клеточных элементов, типизация нейронов, увеличиваются их размеры, развиваются дендритные и аксонные ветвления, расширяется система вертикальных связей в ансамблях нейронов. К 5-6 гг. усложняется система дендритных связей по горизонтали, возрастает полиморфизм нейронов, отражающий их специализацию. К 9-10 гг. пирамидные нейроны достигают наибольших размеров, увеличивается ширина клеточных группировок. К 12-14 гг. все типы интернейронов достигают высокого уровня дифференцировки, усложняются внутри- и межансамблевые связи по горизонтали. В филогенетически наиболее новых областях коры (лобных) усложнение ансамблевой организации нейронного аппарата и межансамблевых связей прослеживается до 18-20-летнего возраста. Развитие нейронного аппарата, его ансамблевой организации и межансамблевых связей обеспечивает формирование с возрастом системной организации высших нервных функций, психики и поведенческих реакций. (Н. В. Дубровинская, Д. А. Фарбер.)


Большой психологический словарь. - М.: Прайм-ЕВРОЗНАК . Под ред. Б.Г. Мещерякова, акад. В.П. Зинченко . 2003 .

Смотреть что такое "РАЗВИТИЕ КОРЫ ГОЛОВНОГО МОЗГА" в других словарях:

    Этимология. Происходит от лат. lateralis боковой. Категория. Процесс перераспределения психических функций между левым и правым полушариями головного мозга, происходящий в онтогенезе. Специфика. Для человека характерно, что специализация… …

    ОТЁК ГОЛОВНОГО МОЗГА - мед. Отёк головного мозга (ОГМ) избыточное накопление жидкости в мозговой ткани, клинически проявляющееся синдромом повышения ВЧД; не нозологическая единица, а реактивное состояние. Развивается вторично, в ответ на любое повреждение мозга.… … Справочник по болезням

    Префронтальная кора головного мозга - Префронтальная кора головного мозга … Википедия

    Мозг головной: кора (кора головного мозга) верхний слой полушарий мозга головного, состоящий прежде всего из нервных клеток с вертикальной ориентацией (пирамидные клетки), а также из пучков афферентных (центростремительных) и эфферентных… … Большая психологическая энциклопедия

    Кора больших полушарий головного мозга - слой серого вещества толщиной 1 5 мм, покрывающий полушария большого мозга млекопитающих животных и человека. Эта часть головного мозга (См. Головной мозг), развившаяся на поздних этапах эволюции животного мира, играет исключительно… … Большая советская энциклопедия

    АРХИТЕКТОНИКА КОРЫ ГОЛОВНОГО - (БОЛЬШОГО) МОЗГА, учение о морфологической структуре коры, основанное на изучении местных особенностей ее структурных элементов. Сущность этого учения такова. Старым исследователям кора большого мозга представлялась построенной однообразно,… … Большая медицинская энциклопедия

    КОРА БОЛЬШИХ ПОЛУШАРИЙ ГОЛОВНОГО МОЗГА - (cortex hemispheria cerebri), паллиум, или плащ, слой серого вещества (1 5 мм), покрывающий полушария большого мозга млекопитающих. Эта часть головного мозга, развившаяся на поздних этапах эволюции, играет исключительно важную роль в… … Биологический энциклопедический словарь

    Кора головного мозга - Центральная нервная система (ЦНС) I. Шейные нервы. II. Грудные нервы. III. Поясничные нервы. IV. Крестцовые нервы. V. Копчиковые нервы. / 1. Головной мозг. 2. Промежуточный мозг. 3. Средний мозг. 4. Мост. 5. Мозжечок. 6. Продолговатый мозг. 7.… … Википедия

    Уродства и дефекты развития головного мозга и черепа - – нарушения развития черепа и головного мозга, которые возникают преимущественно в антенатальном периоде, особенно в периоды бласто и эмбриогенеза. Клинически выявляются сразу же или некоторое время спустя после рождения, отдельные из них могут… … Энциклопедический словарь по психологии и педагогике

    - (англ. motor development in children). В отличие от детенышей многих животных, ребенок к моменту рождения не обеспечен готовыми наследственно фиксированными механизмами регуляции движений. Однако еще в период эмбрионального развития мышечная… … Большая психологическая энциклопедия

Книги

  • Строение и развитие коры большого мозга , Обухов Дмитрий Константинович, Цехмистренко Татьяна Александровна, Васильева Валентина Андреевна. В монографии систематизированы данные по типологии, структуре и модульной организации коры большого мозга человека и животных на разных этапах онтогенеза. Приведен новый фактический материал…

Кора головного мозга является центром высшей нервной (психической) деятельности человека и контролирует выполнение огромного количества жизненно важных функций и процессов. Она покрывает всю поверхность больших полушарий и занимает около половины их объема.

Большие полушария головного мозга занимают около 80% объема черепной коробки, и состоят из белого вещества, основа которого состоит из длинных миелиновых аксонов нейронов. Снаружи полушария покрывает серое вещество или кора головного мозга, состоящая из нейронов, безмиелиновых волокон и глиальных клеток, которые также содержатся в толще отделов этого органа.

Поверхность полушарий условно делится на несколько зон, функциональность которых заключается в управлении организмом на уровне рефлексов и инстинктов. Также в ней находятся центры высшей психической деятельности человека, обеспечивающие сознание, усвоение поступившей информации, позволяющей адаптироваться в окружающей среде, и через нее, на уровне подсознания, посредством гипоталамуса контролируется вегетативная нервная система (ВНС), управляющая органами кровообращения, дыхания, пищеварения, выделения, размножения, а также метаболизмом.

Для того чтобы разобраться что такое кора мозга и каким образом осуществляется ее работа, требуется изучить строение на клеточном уровне.

Функции

Кора занимает большую часть больших полушарий, а ее толщина не равномерна по всей поверхности. Такая особенность обусловлена большим количеством связующих каналов с центральной нервной системой (ЦНС), обеспечивающих функциональную организацию коры мозга.

Эта часть головного мозга начинает образовываться еще во время внутриутробного развития и совершенствуется на протяжении всей жизни, посредством получения и обработки сигналов, поступающих из окружающей среды. Таким образом, она отвечает за выполнение следующих функций головного мозга:

  • связывает органы и системы организма между собой и окружающей средой, а также обеспечивает адекватную реакцию на изменения;
  • обрабатывает поступившую информацию от моторных центров с помощью мыслительных и познавательных процессов;
  • в ней формируется сознание, мышление, а также реализовывается интеллектуальный труд;
  • осуществляет управление речевыми центрами и процессами, характеризующими психоэмоциональное состояние человека.

При этом данные поступают, обрабатываются, сохраняются благодаря значительному количеству импульсов, проходящих и образующихся в нейронах, связанных длинными отростками или аксонами. Уровень активности клеток можно определить по физиологическому и психическому состоянию организма и описать с помощью амплитудных и частотных показателей, так как природа этих сигналов похожа на электрические импульсы, а их плотность зависит от участка, в котором происходит психологический процесс.

До сих пор неясно, каким образом лобная часть коры больших полушарий влияет на работу организма, но известно, что она мало восприимчива к процессам, происходящим во внешней среде, поэтому все опыты с воздействием электрических импульсов на этот участок мозга, не находят яркого отклика в структурах. Однако отмечается, что люди, у которых лобная часть повреждена, испытывают проблемы в общении с другими индивидами, не могут реализовать себя в какой-либо трудовой деятельности, а также им безразличен их внешний вид и сторонние мнение. Иногда встречаются и другие нарушения в осуществлении функций этого органа:

  • отсутствие концентрации внимания на предметах обихода;
  • проявление творческой дисфункции;
  • нарушения психоэмоционального состояния человека.

Поверхность коры полушарий поделена на 4 зоны, очерченные наиболее четкими и значимыми извилинами. Каждая из частей при этом контролирует основные функции коры головного мозга:

  1. теменная зона - отвечает за активную чувствительность и музыкальное восприятие;
  2. в затылочной части расположена первичная зрительная область;
  3. височная или темпоральная отвечает за речевые центры и восприятие звуков поступивших из внешней среды, кроме того участвует в формировании эмоциональных проявлений, таких как радость, злость, удовольствие и страх;
  4. лобная зона управляет двигательной и психической активностью, а также руководит речевой моторикой.

Особенности строения коры мозга

Анатомическое строение коры больших полушарий обусловливает ее особенности и позволяет выполнять возложенные на нее функции. Кора головного мозга владеет следующим рядом отличительных черт:

  • нейроны в ее толще располагаются послойно;
  • нервные центры находятся в конкретном месте и отвечают за деятельность определенного участка организма;
  • уровень активности коры зависит от влияния ее подкорковых структур;
  • она имеет связи со всеми нижележащими структурами центральной нервной системы;
  • наличие полей разных по клеточному строению, что подтверждается гистологическим исследованием, при этом каждое поле отвечает за выполнение какой-либо высшей нервно деятельности;
  • присутствие специализированных ассоциативных областей позволяет устанавливать причинно-следственную связь между внешними раздражителями и ответом организма на них;
  • способность к замещению поврежденных участков близлежащими структурами;
  • этот отдел мозга способен сохранять следы возбуждения нейронов.

Большие полушария головного мозга состоят главным образом из длинных аксонов, а также содержит в своей толще скопления нейронов, образующих наибольшие ядра основания, которые входят в состав экстрапирамидальной системы.

Как уже говорилось, формирование коры мозга происходит еще во время внутриутробного развития, причем вначале кора состоит из нижнего слоя клеток, а уже в 6 месяцев ребенка в ней сформированы все структуры и поля. Окончательное становление нейронов происходит к 7-летнему возрасту, а рост их тел завершается в 18 лет.

Интересен тот факт, что толщина коры не равномерна на всей протяженности и включает в себя разное количество слоев: например, в области центральной извилины она достигает своего максимального размера и насчитывает все 6 слоев, а участки старой и древней коры имеют 2-х и 3-х слойное строение соответственно.

Нейроны этой части мозга запрограммированы на восстановление поврежденного участка посредством синоптических контактов, таким образом каждая из клеток активно старается восстановить поврежденные связи, что обеспечивает пластичность нейронных корковых сетей. Например, при удалении или дисфункции мозжечка, нейроны, связывающие его с конечным отделом, начинают прорастать в кору больших полушарий. Кроме того пластичность коры также проявляется в обычных условиях, когда происходит процесс обучения новому навыку или в результате патологии, когда функции, выполняемые поврежденной зоной, переходят на соседние участки мозга или даже полушария.

Кора мозга обладает способностью сохранять следы возбуждения нейронов длительное время. Эта особенность позволяет обучаться, запоминать и отвечать определенной реакцией организма на внешние раздражители. Так происходит формирование условного рефлекса, нервный путь которого состоит из 3 последовательно соединенных аппарата: анализатора, замыкательного аппарата условно-рефлексных связей и рабочего прибора. Слабость замыкательной функции коры и следовых проявлений можно наблюдать у детей с выраженной умственной отсталостью, когда образовавшиеся условные связи между нейронами хрупки и ненадежны, что влечет за собой трудности в обучении.

Кора головного мозга включает в себя 11 областей, состоящих из 53 полей, каждому из которых в нейрофизиологии присвоен свой номер.

Области и зоны коры

Кора относительно молодая часть ЦНС, развывшаяся из конечного отдела мозга. Эволюционно становление этого органа происходило поэтапно, поэтому ее принято разделять на 4 типа:

  1. Архикортекс или древняя кора в связи с атрофией обоняния превратился в гиппокамповую формацию и состоит из гиппокампа и сопряженных ему структур. С помощью ее регулируется поведение, чувства и память.
  2. Палеокортекс или старая кора, составляет основную часть обонятельной зоны.
  3. Неокортекс или новая кора имеет толщину слоя около 3-4 мм. Является функциональной частью и совершает высшую нервную деятельность: обрабатывает сенсорную информацию, отдает моторные команды, а также в ней формируется осознанное мышление и речь человека.
  4. Мезокортекс является промежуточным вариантом первых 3 типов коры.

Физиология коры больших полушарий

Кора головного мозга имеет сложную анатомическую структуру и включает в себя сенсорные клетки, моторные нейроны и интернероны, обладающих способностью останавливать сигнал и возбуждаться в зависимости от поступивших данных. Организация этой части мозга построена по колончатому принципу, в котором колонки делаться на микромодули, имеющие однородное строение.

Основу системы микромодулей составляют звездчатые клетки и их аксоны, при этом все нейроны одинаково реагируют на поступивший афферентный импульс и посылают также синхронно в ответ эфферентный сигнал.

Формирование условных рефлексов, обеспечивающих полноценное функционирование организма, и происходит благодаря связи головного мозга с нейронами, расположенными в различных частях тела, а кора обеспечивает синхронизацию умственной деятельности с моторикой органов и областью, отвечающей за анализ поступающих сигналов.

Передача сигнала в горизонтальном направлении происходит через поперечные волокна, находящиеся в толще коры, и передают импульс от одной колонки к другой. По принципу горизонтальной ориентации кору мозга можно поделить на следующие области:

  • ассоциативная;
  • сенсорная (чувствительная);
  • моторная.

При изучении этих зон применялись различные способы воздействия на нейроны, входящие в ее состав: химическое и физическое раздражение, частичное удаление участков, а также выработка условных рефлексов и регистрация биотоков.

Ассоциативная зона связывает поступившую сенсорную информацию с полученными ранее знаниями. После обработки формирует сигнал и передает его в двигательную зону. Таким образом она участвует в запоминании, мышлении и обучении новым навыкам. Ассоциативные участки коры головного мозга расположены в близости с соответствующей сенсорной зоной.


Чувствительная или сенсорная зона занимает 20% коры головного мозга. Она также состоит из нескольких составляющих:

  • соматосенсорной, расположенной в теменной зоне отвечает за тактильную и вегетативную чувствительность;
  • зрительной;
  • слуховой;
  • вкусовой;
  • обонятельной.

Импульсы от конечностей и органов осязания левой стороны тела, поступают по афферентным путям в противоположную долю больших полушарий для последующей обработки.

Нейроны моторной зоны возбуждаются при помощи импульсов, поступивших от клеток мускулатуры, и находятся в центральной извилине лобной доли. Механизм поступления данных схож с механизмом сенсорной зоны, так как двигательные пути образуют перехлест в продолговатом мозге и следуют в расположенную напротив моторную зону.

Извилины борозды и щели

Кора больших полушарий образована несколькими слоями нейронов. Характерной особенностью этой части мозга является большое количество морщин или извилин, благодаря чему ее площадь во много раз превосходит площадь поверхности полушарий.

Корковые архитектонические поля определяют функциональное строение участков коры головного мозга. Все они различны по морфологическим признакам и регулируют разные функции. Таким образом выделяется 52 различных поля, расположенных на определенных участках. По Бродману это разделение выглядит следующим образом:

  1. Центральная борозда разделяет лобную долю от теменной области, впереди нее пролегает предцентральная извилина, а сзади - позадицентральная.
  2. Боковая борозда отгораживает теменную зону от затылочной. Если развести ее боковые края то внутри можно рассмотреть ямку, в центре которой имеется островок.
  3. Теменно-затылочная борозда отделяет теменную долю от затылочной.

В предцентральной извилине расположено ядро двигательного анализатора, при этом к мышцам нижней конечности относятся верхние части передней центральной извилины, а к мышцам полости рта, глотки и гортани – нижние.

Правосторонняя извилина образует связь с двигательным аппаратом левой половины тела, левосторонняя – с правой частью.

В позадицентральной извилине 1 доли полушария содержится ядро анализатора тактильных ощущений и она также связана с противолежащей частью тела.

Клеточные слои

Кора головного мозга осуществляет свои функции посредством нейронов, находящихся в ее толще. Причем количество слоев этих клеток может отличаться в зависимости от участка, габариты которых также разнятся по размеру и топографии. Специалисты выделяют следующие слои коры головного мозга:

  1. Поверхностный молекулярный сформирован в основном из дендритов, с небольшим вкраплением нейронов, отростки которых не покидают границы слоя.
  2. Наружный зернистый состоит из пирамидальных и звездчатых нейронов, отростки которых связывают его со следующим слоем.
  3. Пирамидальный образован пирамидными нейронами, аксоны которых направлены вниз, где обрываются или образуют ассоциативные волокна, а дендриты их соединяют этот слой с предыдущим.
  4. Внутренний зернистый слой сформирован звездчатыми и малыми пирамидальными нейронами, дендриты которых уходят в пирамидальный слой, а также его длинные волокна уходят в верхние слои или спускаются вниз в белое вещество мозга.
  5. Ганглионарный состоит из крупных пирамидальных нейроцитов, их аксоны выходят за пределы коры и связывают различные структуры и отделы ЦНС между собой.

Мультиформный слой сформирован всеми видами нейронов, а их дендриты ориентированы в молекулярный слой, а аксоны пронизывают предыдущие слои или выходят за пределы коры и образуют ассоциативные волокна, образующие связь клеток серого вещества с остальными функциональными центрами головного мозга.

Видео: Кора больших полушарий головного мозга

  • 93. Мозжечек. Развитие, тканевое строение, функция. Нейронный состав и межнейрональые связи.
  • 94. Нерв. Строение, функция, регенерация.
  • 95. Рефлекторная дуга вегетативного симпатического рефлекса
  • 96. Местная вегетативная рефлекторная дуга.
  • 97. Симпатический отдел вегетативной нервной системы, его представительство в составе цнс и на периферии.
  • 98. Сетчатка глаза. Нейронный состав и глиоциты. Морфологический субстрат восприятия света (цитология восприятия света).
  • 99. Органы чувств, их классификация. Понятие об анализаторах и их основных отделах. Рецепторные клетки и механизмы рецепции.
  • 100. Орган вкуса. Развитие и тканевое строение. Цитофизиология рецепции.
  • 101. Орган зрения. Развитие и тканевое строение глазного яблока.
  • 102. Диоптрический аппарат глаза. Развитие, тканевое строение, функции.
  • 103. Орган слуха. Развитие и тканевое строение. Цитофизиология восприятия слуха.
  • 104. Орган равновесия. Развитие и тканевое строение.
  • 105. Сосуды микроциркуляторного русла. Развитие, строение и функциональная характеристика.
  • 106. Сердечно-сосудистая система. Развитие и морфофункциональная характеристика.
  • 107. Классификация кровеносных и лимфатических сосудов, развитие, строение. Влияние гемодинамических условий на строение сосудов. Регенерация сосудов.
  • 108. Тканевое строение аорты – сосуда эластического типа. Возрастные изменения.
  • 109. Вены. Классификация, развитие, строение, функции. Влияние гемодинамических условий на структуру вен.
  • 110. Артерии. Классификация, развитие, строение, функции. Взаимосвязь структуры артерий и гемодинамических условий. Возрастные изменения.
  • 112. Иммунная система. Центральные и периферические органы иммуногенеза.
  • 113. Тимус. Развитие. Строение и функции. Понятие о возрастной и акцидентальной инволюции тимуса.
  • 114. Лимфатические узлы. Развитие, строение и функции.
  • 115. Красный костный мозг. Развитие, строение, функции. Регенерация. Трансплантация.
  • 116. Селезенка. Развитие, строение, функции. Особенности внутриорганного кровоснаюжения.
  • 117. Гипофиз. Развитие, строение, кровоснабжение и функции отдельных долей.
  • 118. Гипоталамо-гипофизарно-надпочечниковая система.
  • 119. Щитовидная железа. Развитие, строение, функции.
  • 90. Кора больших полушарий головного мозга. Развитие, тканевое строение, функции. Понятие о цито- и миелоархитектонике коры.

    Развитие. Развитие коры наиболее интенсивно проходит на 20й неделе эмбриогенеза. Он развивается из вентрикулярной герментативной зоны конечного мозга, где расположены малоспециализированные пролиферирующие клетки, из которых дифференцируются нейроциты головного мозга. В это же время формиру­ются поддерживающие глиоциты и глиальные волокна (волокна после рождения исчезают), которые располагаются перпендикулярно к поверхности будущей коры - это кортикальная пластинка. Вначале в эту пластинку поступают нейроциты будущих I и VI слоев (т.е. самого поверхностного и глубокого), а затем, как бы раздвигая эту первичную закладку, в нее встраиваются последовательно клетки V, IV, III и II слоев. Процесс осуществляется небольшими участками в разные периоды эмбриогенеза. В каждом из этих участков образуются группы нейронов, выстраивающихся вдоль глиальных волокон в виде колонки. В дальнейшем из них формируются мини- и макроколонки.

    Строение. Кора головного мозга располагается на его поверхности, повторяет все изгибы, образуя складки и извилины. В состав коры головного мозга входит до 14 миллиардов нейронов. Толщина коры 2-5 мм. Кора головного мозга представлена слоем серого вещества. Наиболее сильно развита в области передней центральной извилины. Различные участки, отличающиеся друг от друга некоторыми особенностями расположения и строения клеток (цитоархитектоника), расположения волокон (миелоархитектоника) и функциональным значением, называются полями. Это места высшего анализа и синтеза нервных импульсов. Поля бывают зрительные, слуховые, обонятельные и т.д. они не имеют четких границ между собой.

    Цитоархитектоника . Кора состоит из мультиполярных нейронов, разнообразных по форме. Нейроны расположены нерезко ограниченными слоями. В каждом слое преобладает определенный вид клеток. Различают 6 слоев:

      Молекулярный

      Наружный зернистый

      Пирамидных нейронов

      Внутренний зернистый

      Ганглионарный

      Слой полиморфных клеток

    1) молекулярный (самый наружный) содержит мало нейронов и состоит преимущественно из горизонтально рас­положенных волокон. В этот слой поступают дендриты от всех слоев коры головного мозга. Здесь видны мелкие веретеновидные клетки, отростки которых располагаются парал­лельно поверхности коры.

    2) наружный зернистый состоит из мелких нейронов различной формы: пира­мидных, звездчатых, овальных. Пирамиды этого слоя имеют размеры около 10 мкм. Их верхушечные дендриты направляются в молекулярный слой, боковые - ветвятся здесь же, аксоны выходят в белое веще­ство и снова возвращаются в кору, образуя кортико-корти­кальные нервные волокна.

    3) пирамидный (самый широкий) состоит из мелких и средних пирамид (10-40 мкм). Мелкие пирамидные нейро­ны располагаются более поверхностно, средние - глубже. Верхушечные дендриты пирамид направляются в молеку­лярный слой, боковые - образуют синапсы с нейронами это­го слоя, аксон выходит в белое вещество, образует кортико-кортикальное волокно, которое возвращается в кору и напра­вляется в молекулярный слой. Одни кортико-кортикальные волокна заканчиваются синапсами в своем полушарии и на­зываются ассоциативными, другие проходят через мозоли­стое тело на противоположное полушарие и называются комиссурольными.

    4) внутренний зернистый состоит из мелких нейронов овальной, пирамидной формы, шипиковых звездчатых нейронов. Дендриты нейро­нов этого слоя направляются в молекулярный слой, аксоны выходят в белое вещество.

    5) ганглионарный (слой гигант­ских пирамид) состоит из ги­гантских пирамид - клеток Беца. Верхушечные дендриты этих клеток направляются в молеку­лярный слой, боковые - располагаются в этом же слое, кон­тактируя с соседними нейронами. Часть аксонов гигантских пирамид направляется в спинной мозг, образуя пирамидные, или кортикоспинальные, пути, которые заканчиваются на моторных нейронах спинного мозга. Другая часть аксонов направляется к ядрам ствола головного мозга, образуя кортиконуклеарные пути, заканчивающиеся в красном ядре, яд­рах нижних олив, моста, откуда поступают в мозжечок в виде моховидных волокон.

    От аксонов пирамид, образующих кортикоспинальные пути, отходят коллатерали, которые возвращаются в кору го­ловного мозга, а также к красному ядру, хвостатому ядру, яд­рам нижних олив, моста и др.

    6) слой полиморфных клеток (полиморфный) Образован различной формы нейроцитами: веретеновидные, пирамидные и др. Дендриты этих нейронов под­нимаются в молекулярный слой, аксоны выходят в белое вещество и принимают участие в образовании афферентных кортикоспинальных (пирамидных) путей.

    Структурно-функциональной единицей коры головного мозга является модуль – это структура, представляющая собой систему локальных нервных связей. Каждая макроколонка фор­мируется вокруг одного кортико-кортикального волокна (аксона пирамидного нейрона II или III слоев коры) и двух таламокортикальных волокон (волокна заканчиваются в IV слое). В состав макроколонки входят микроколонки. Аксоны пирамидных нейронов модуля проецируются на три модуля той же стороны и через мозолистое тело на два модуля противоположного полушария. В каждой макроколонке имеется возбуждающая и тормозная системы. Возбуждающая система модуля состоит из волокон и нейронов. К макроколонке от зрительных бугров подходят 2 специфических волокна, которые заканчиваются синап­сами на шипиковых клетках внутреннего зернистого слоя или на базальных дендритах пирамид III слоя. Шипиковые и пирамидные нейроны, таким образом, относятся к воз­буждающей системе. Среди шипиковых нейроцитов есть 2 разновидности:

    1) клетки фокального типа, аксоны кото­рых заканчиваются на верхушечных дендритах пирамид;

    2) клетки диффузного типа, аксоны которых заканчивают­ся на базальных дендритах пирамидных нейронов.

    Тормозная система модуля включает 4 разновидности тормозных нейронов:

    1) нейроны с аксональной кисточкой; располага­ются в пределах молекулярного слоя и образуют тормозные синапсы на веточках кортико-кортикальных волокон, пре­пятствуя прохождению импульса по горизонтали.

    2) корзинчатые большие и малые; Малые корзинчатые тормозные нейроны располагаются в V, III и II слоях. Их аксоны образуют тормозные синапсы на пирамидах этих трех слоев. Большие корзинчатые нейроны образуют тормозные синапсы на пирамидах вышеуказанных 3-х слоев, но за пределами своей колонки.

    3) аксо-аксональные располагаются в III и II слоях, и образуют тормозные синапсы на пирамид­ных нейронах этих двух слоев.

    4) нейроны с двойным букетом дендритов харак­теризуются тем, что их аксоны образуют тормозные синапсы на всех остальных тормозных нейронах, растормаживая, та­ким образом, пирамидные нейроны. Эти тормозные нейроны получают импульсы от шипиковых клеток, которые одновре­менно передают возбуждающие импульсы на пирамидные нейроны. Поэтому одновременно с растормаживанием про­исходит возбуждение пирамидных нейронов.

    Миелоархитектоника . Номера в скобках показывают какому клеточному слою соответствует слой волокон

    Тангенциальный слой (1) – тангенциальное сплетение

    Полоска Бехтерева (2 слой)

    Надполосковый слой (3)

    Наружная полоска Байярже (4 слой)

    Межполосковый слой (5)

    Внутренняя полоска Байярже (6 слой)

      афферентные – идут в составе радиальных лучей приходят от ниже расположенных отделов ГМ (таламокортикальные) или из других участков коры БМ (кортико-кортикальные)

      эфферентные – идут в нисходящем направлении в составе радиальных лучей

      ассоциативные нервные волокна – лежат параллельно поверхности коры, связывают отдельные участки одного полушария;

      комиссуральные волокна - соединяют участки коры разных по­лушарий;

      проекционные нервные волокна - связывают кору и нижележащие центры нервной системы;

      горизонтальные нервные волокна, расположенные на уровне молекулярного, внутреннего зернистого и ганглионарного слоев.

    Функции:

      обработка всей сенсорной информации

      формирование ответной реакции

      интеграция всех сложных систем поведения

      высшая нервная деятельность (мышление, сознание, память)

    "

    Эволюция человека была вызвана усложнением его деятельности из-за необходимости более активного познания окружающего мира. Это привело к изменению строения мозга человека, так как его функции становились все сложнее и разнообразнее. Над зонами мозга, непосредственно связанными с органами чувств и двигательным аппаратом, развились зоны, наиболее плотно снабженные так называемыми ассоциативными волокнами. Эти зоны необходимы для более сложной обработки поступающей в мозг информации.

    В процессе формирования коры головного мозга наступает новый этап, когда роль ее функционирования сильно возрастает. У человека, в отличие от позвоночных, вплоть до хищников, психические функции уже связаны с корой головного мозга. Кора у него – это орган индивидуальности и сознательной деятельности.

    В психологии очень конкретно стоит вопрос о том, каковы взаимоотношения коры и психики человека, и где находятся ее участки, отвечающие за ту или иную психическую функцию.

    Изучение развития головного мозга

    До последнего времени была ведущей «локализационная теория». То есть считалось, что каждой психической функции, даже самой сложной, соответствует определенный участок головного мозга. Эта теория строится на представлении мозга как системы отдельных мозговых центров, которые соединяются друг с другом особыми нервными волокнами. Она отражает уровень развития психологических методов, существовавших в то время, и то, что на небогатом фактическом материале было выдвинуто много гипотез и теорий.

    Изучение развития головного мозга в процессе эволюции выявило, что чем сложнее организм, тем ярче выражено анатомическое разделение коры. Участки коры, отвечающие за более сложные функции, получают большее развитие.

    Большие результаты дало изучение коры в процессе онтогенеза. Исследования выявили, что на ранних стадиях развития ее можно разделить на три основные зоны:

    1. изокортекс — новая кора, у человека составляет основную часть коры;
    2. аллокортекс — включает в себя древнюю и старую кору, например, у амфибий только появляется; хорошо выражен у рептилий;
    3. алло- и изокортекс — межуточная кора.

    Дальнейшие, более совершенные методы исследования установили, что кора состоит из отдельных полей, которые разнятся гистологически. Эти поля могут быть отделены друг от друга. Это объясняет некоторое различие выполняемых ими функций. В связи с этим «локализационная теория» основала положение о том, что даже самая сложная психическая функция имеет определенный «центр» в мозге и им выполняется.

    Современные исследования разнообразных речевых, зрительных и двигательных функций разрушает классическую «локализационную теорию». Например, нарушение речи связано с повреждением различных участков коры и часто – с нарушением других интеллектуальных функций.

    В этом случае исследования происходят на основе изучения нарушения участков коры, то есть методом «удаления». При нарушении определенного участка коры повреждается определенная функция. Этот метод не ведет к установлению «центра» формирования функции в коре, а лишь дает понимание, что данная область коры участвует в реализации конкретной функции. Возможно, в выполнении нарушенной функции участвуют и другие поля.

    Ученые доказали, что нарушение других участков коры, которые не связаны с выполнением данной функции, также могут повредить эту функцию. Еще было установлено, что при разрушении основного «центра» выполнения функции, остальные участки коры могут частично принять на себя ее работу, это происходит со временем и имеет только компенсационный эффект.

    Единый чувствительно-двигательный аппарат

    Кору головного мозга нужно воспринимать как единый чувствительно-двигательный аппарат. Отдельные поля коры многозначны по выполняемым функциям. Чуть более сильное развитие одного из двух слоев коры дает местное преобладание сенсорной или двигательной функциональной составляющей.

    Что касается какой-либо более сложной функции нашей психики, то обозначить ее место в конкретном поле коры мозга невозможно. В выполнении такой функции задействованы различные участки коры. Каждая структура коры, участвующая в функции, вносит свой вклад. Нервные элементы коры, участвующие в выполнении функции, свои действия объединяют во временную структуру.

    В настоящее время своих сторонников имеют два мнения:

    1. мозг является суммой разнообразных центров, специализирующихся на отдельной функции;
    2. мозг – единая структура, отдельные составляющие которой равнозначны.

    Обе эти теории не дают полной характеристики этого сложного органа, состоящего из различных слоев, но объединенного функционально.

    Принимая во внимание весь накопленный исследовательский материал, нужно сделать единственно правильный вывод: выполняя сложные задачи, мозг работает как единое целое с привлечением всей коры или ее основной части. Головной мозг – это не однородная масса, в нем прослеживается строгое разделение как с функциональной, так и с гистологической стороны. Каждая часть мозга важна для общего процесса. Отдельные участки мозга вносят особенно существенный вклад в функцию, если она является сложной, но «центров» выработки для таких функций нет. Наиболее важными для интеллекта являются частично височная доля, нижняя теменная доля, третья лобная извилина. Именно их повреждение наиболее плачевно влияет на психику. Психические функции связаны, скорее, со сложными процессами, происходящими между нейронами головного мозга, отсюда и вытекает то, что каждая его часть имеет многогранное значение.

    Степень подразделения коры на уровни и их привязка функций к определенному месту зависят и от генетики организма. У птиц практически отсутствует какая-либо привязка функции к коре. Некоторая привязка существует у кошек и собак, правда, зоны, отвечающие за ту или иную функцию, несколько перекрывают друг друга. У человеческих же эмбрионов такая привязка, несомненно, существует. Исследуя мозг организмов, нельзя переносить их результаты и выводы на генетически отличающихся.

    Даже в пределах одной генетической группы локализация процессов и механизмов зависит еще и от времен их возникновения. Если функция наиболее древняя, то ее локализация наиболее устойчива. В подкорке порядка и стабильности больше, чем в коре. Более примитивные функции в коре закрепились максимально точно, так как возникали в процессе эволюции мозга. Если функция сложная и появилась позднее, то в ее выполнении задействована значительная часть коры, и каждая часть играет свою роль в общем процессе, поэтому четкая локализация невозможна.

    Мы все еще слишком мало знаем о росте мозга и развитии его организации. Анатомическое изучение мозга -необычайно кропотливый процесс, и лишь у немногих исследователей достаточно мужества, упорства и возможностей, чтобы провести морфологические исследования мозга детей различного возраста. Физиологические исследования, касающиеся, например, возрастных изменений характера энцефалограмм, все еще находятся в начальной стадии.
    Большую часть сведений по развитию структуры мозга мы черпаем из добросовестных работ Конела (Conel), который подверг анализу структуру коры головного мозга новорожденного, трехмесячного, шестимесячного, пятнадцатимесячного, двухлетнего, четырехлетнего и шестилетнего ребенка. Данные по пренатальному развитию структуры очень малочисленны и носят качественный характер. Что касается структурных изменений после шестилетнего возраста, то подобные данные практически отсутствуют.
    Кора головного мозга может быть идентифицирована примерно на 8-й нед внутриутробного развития. Впоследствии происходит ее увеличение в ширину, и к 26-й нед она приобретает характерное строение из шести нечетко разграниченных слоев нервных клеток и одного внутреннего слоя волокон. Созревание слоев происходит неодновременно: клетки пятого слоя к моменту рождения оказываются более развитыми по сравнению с другими, за ними следуют клетки шестого, третьего, четвертого и второго слоев. Полагают, что все нервные клетки, имеющиеся у взрослого человека, формируются во время первых 15-18 нед внутриутробного развития, за исключением, может быть, некоторых клеток мозжечка, появляющихся несколько позднее. Впоследствии происходит рост аксонов и дендритов, появление нуклеопротеидов в цитоплазме, увеличение размеров клеток и образование миелино- вых оболочек аксонов. Однако новые нервные клетки уже не образуются. Клетки нейроглии, опорной соединительной ткани, продолжают появляться в течение значительно более длительного времени. Уже на ранних этапах развития их больше, чем нейронов, а впоследствии они составляют около 90% всех клеток мозга.
    Анализируя эти изменения, можно выделить ряд критериев для определения зрелости различных частей коры, подобных критериям скелетной зрелости, за которые приняты изменения центров окостенения кисти и запястья. Конел выделил 9 критериев, в том числе число нейронов на единицу площади, величину нейронов, состояние вещества Ниссля и нейрофибрилл, длину аксонов и степень миелинизации.
    Можно выделить два четких градиента развития: первый касается последовательности развития основных областей мозга, второй - последовательности развития центров в пределах каждой области. Ведущей частью коры является первичная моторная область в прецентральной извилине (рис. 22.2); за ней следует первичная сенсорная область в постцентральной извилине, затем первичная зрительная область в затылочной доле и первичная слуховая область в височной доле. Все ассоциативные области отстают от первичных, причем градиенты развития всегда идут в направлении от первичных зон к вторичным. Так, в лобной доле прежде всего начинают развиваться те ее части, которые находятся непосредственно впереди моторной коры, а потом уж - полюс доли. Извилины медиальной поверхности полушарий и островок развиваются в последнюю очередь.
    В самой моторной зоне нейроны, контролирующие движения рук и верхней части туловища, развиваются раньше тех клеток, которые управляют функцией ног. То же самое характерно и для сенсорной области. Это согласуется, с одной стороны, с относительно большей зрелостью руки по сравнению с ногой, а с другой - с тем, что ребенок лучше владеет движениями рук.
    У новорожденного кора мозга развита очень слабо; морфологическая картина соответствует малочисленности и даже полному отсутствию кортикальных функций. К концу 1-го мес жизни гистологическая картина первичной моторной области верхних конечностей и туловища свидетельствует о возможности ее функционирования, а к 3-му мес все первичные области оказываются в относительно зрелом состоянии, что связано с развитием у ребенка зрения и слуха. Однако ассоциативные области, выполняющие интегративную функцию, в это время еще не развиты. К 6 мес про-

    исходит миелинизация отдельных волокон, приходящих в кору с нижних уровней мозга, хотя внутри самой коры созревает лишь небольшое число ассоциативных волокон. В возрасте между 6 мес и 2 годами происходит дальнейшее развитие, во время которого первичная сенсорная область достигает уровня развития первичной моторной области. Однако многие области все еще находятся в незрелом состоянии, особенно область гиппокампа, поясной извилины и островка.
    Начиная с момента рождения и до четырех лет, а может быть, и несколько дольше происходит постоянное увеличение числа и размеров дендритов во всех слоях коры. Кроме того, увеличиваются и усложняются как экзогенные волокна, приходящие в кору с нижних уровней мозга, так и ассоциативные волокна, расположенные в пределах отдельных зон коры и между ними. Степень взаимосвязи (т. е. возможности клетки оказывать влияние на другие клетки посредством связей с ними) увеличивается, и это, очевидно, имеет первостепенное значение в формировании более сложных функций мозга.
    Исследования Яковлева и его коллег по миелинизации показали, что мозг продолжает постепенно развиваться, по крайней мере вплоть до наступления пубертатного периода, а может быть, и дольше. Миелинизация нервных волокон представляет собой только один из признаков зрелости. Волокна могут проводить импульсы и, вероятно, иногда проводят их еще до появления мие- линовой оболочки. Данные о миелинизации хорошо согласуются с данными Конела о появлении нервных клеток в тех случаях, когда оба источника информации пересекаются. Как правило, волокна, несущие импульсы к определенным полям коры, миелинизируются одновременно с теми волокнами, которые проводят импульсы из этих полей к периферии. Таким образом, созревание проходит по дуге, затрагивая в первую очередь функциональные единицы, а не топографические участии.
    Миелинизация целого ряда путей завершается примерно к трем или четырем годам. Волокна, связывающие мозжечок с корой мозга, которые необходимы для осуществления точного контроля над произвольными движениями, после рождения только начинают миелинизироваться; полное завершение этого процесса происходит лишь к четырем годам. Ретикулярная формация - часть мозга, особенно развитая у приматов и человека и связанная с функцией поддержания внимания и сознания, - продолжает миелинизироваться, по крайней мере вплоть до наступления пубертатного периода, а может быть, и несколько дольше. Сходным образом миелинизация продолжается и в частях переднего мозга, расположенных ближе к средней линии. Яковлев предполагает, что это может быть связано с замедленным развитием типа поведения, относящегося к метаболической, висцеральной и гормональной активности во время половой жизни.
    В процессе всего развития мозга, начиная с ранних стадий внутриутробной жизни, становление функций тесно связано с созреванием структуры. Волокна звуковоспринимающей системы (звукового анализатора) начинают миелинизироваться уже на 6-м мес внутриутробной жизни, но завершение этого процесса происходит постепенно, продолжаясь вплоть до 4-го года жизни ребенка. В противоположность этому, волокна световоспринимающей системы (зрительного анализатора) начинают миелинизироваться лишь после рождения ребенка, но завершение этого процесса происходит очень быстро. Яковлев считает, что во внутриутробном периоде развития звуки функционирующих материнских органов являются главными сенсорными раздражителями, если не считать антигравитационных стимулов. Очевидно, они не воспринимаются на уровне коры, но на подкорковом уровне анализатор работает. После рождения быстро начинают преобладать зрительные раздражители, так как для человека характерно развитое зрение. Вскоре кора начинает принимать эти сигналы: корковый конец зрительного анализатора миелинизируется в течение первых нескольких месяцев после рождения. Напротив, корковый конец слухового анализатора миелинизируется очень медленно, что, вероятно, связано с развитием речи.
    Едва ли можно допустить, что подобная взаимосвязь между созреванием структуры и становлением функции внезапно прекращается в 6, 10 или 13 лет. Напротив, у нас есть все основания полагать, что высшие функции мозга развиваются лишь тогда, когда заканчивается созревание некоторых структур, или клеточных центров, локализованных по всей коре. Даже миллионы дендритов занимают очень небольшое пространство, и, следовательно, значительное увеличение степени взаимосвязи может проходить при общем повышении веса мозга всего на несколько процентов. Стадии умственного развития, описанные Пиаже (Piaget) и другими специалистами в области детской психологии, отличаются множеством характерных особенностей, присущих развивающимся структурам, а последовательность стадий, вероятно, зависит от постепенного созревания и организации коры (и ограничена ими).
    Пока еще не ясно, в какой мере окружающая среда может влиять на созревание и организацию мозга. По мнению Кахала (Са- jal) и Хебба (НеЬЬ), функциональная активность клетки стимулирует дальнейшее развитие ее связей, однако эта гипотеза не подтверждена экспериментальными данными.
    Многие аспекты функционирования мозга, по-видимому, совершенно не подвержены изменениям условий окружающей среды, если последние колеблются в нормальных пределах. Так, например, дети, родившиеся до окончания нормального 40-недельного срока внутриутробного периода, формируются в неврологическом отношении так же, как и дети того же возраста, развивающиеся в утробе матери. Недоношенные дети не начинают раньше ходить или стоять, несмотря на более продолжительное воздействие со стороны внешней окружающей среды. Это, конечно, не значит, что созревание мозга вообще не зависит от внешних условий. При некоторых состояних, таких, как недоедание или воздействие токсичных веществ, нормальный рост может нарушаться. В настоящее время все еще нельзя определенно утверждать, до цакой степени недоедание, встречающееся в некоторых слаборазвитых странах, может тормозить созревание мозга, хотя эта проблема широко дискутируется. Источником множества недоразумений послужило непонимание некоторыми экспериментаторами того факта, что голодание новорожденной мыши соответствует, логически говоря, голоданию плода человека, находящегося в середине внутриутробного развития, а не новорожденного ребенка. Поэтому большая часть экспериментальных исследований, показавших на крысах постоянное воздействие такого голодания, может относиться только к развитию детей, родившихся с низкими для их возраста весом и размерами тела вследствие заболеваний плаценты. В последние годы Суссером и Стейном было выполнено классическое исследование развития детей, которые ощутили на себе воздействие тяжелого голода в Голландии в 1944-1945 гг. В то время многие из них находились еще в утробе матери или были в младенческом состоянии (Stein, Susser, Saenger and Marolla, 1975). Обследованные в 18-летнем возрасте перед поступлением на военную службу эти юноши не отличались по размерам тела или умственному развитию от своих сверстников, которые в детстве не голодали. В настоящее время есть основания считать, что высокий потенциал «наверстывающего» роста обеспечивает полное восстановление нормальной длины тела и, вероятно, умственного развития даже после тяжелого недоедания в том случае, если условия жизни ребенка во время восстановительного периода были хорошими. Именно это последнее условие обычно редко выполняется в развивающихся странах. Суссер и Стейн великолепно подытоживают современное состояние знаний в этой области следующими словами: «По нашему мнению, следует признать, что в промышленных странах плохое питание в пренатальном периоде не может считаться существенным фактором в социальном распределении умственных способностей среди выживших взрослых. Однако его нельзя исключать в качестве возможного фактора в сочетании с плохим ностнатальным питанием, особенно в экономически слаборазвитых странах» (1975).